
WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique
Article mis à jour le : 2025/10/07 15:45 / Imprimé le 2026/02/01 15:08

http://www.lesporteslogiques.net/wiki/ 1 / 17

impression 3D, animatronique, marionnette, raspberry-pi, electronique, em

Tête de marionnette animatronique
(Cette tête fait partie du projet Barbichette)

Fabrication d'une tête animatronique. Le projet original est diffusé sous licence libre par Rolf Jethon et se compose d'une
partie hardware : mécanique (pièces à imprimer, visserie, etc), électronique (raspberry pi ou orange pi, contrôleur de
servomoteurs, servomoteurs, etc.) et d'une partie software développée par l'auteur (en perl!), les README donne des infos
sur l'articulation du système logiciel.

Le système permet de synchroniser des mouvements de servomoteurs pré-enregistrés avec des fichiers audio MP3 et de les
rejouer. 16 servomoteurs sont controlables grâce au driver PCA9685, l'audio est joué sur la sortie audio du Raspberry Pi. Les
mouvements de servo sont enregistrés sur une base de temps de 50ms.

Site du projet : https://bechele.de/?page_id=70
Bouche et sourcils : https://www.thingiverse.com/thing:2863069
Paire d'yeux indépendants : https://www.thingiverse.com/thing:2781756
Paire d'yeux améliorée : https://www.thingiverse.com/thing:4058084
Software : https://bechele.de/?page_id=73
README du software : https://bechele.de/?page_id=188

Le projet est aussi présenté en détail sur ce blog https://zappedmyself.com/animatronics/bechele2-info/

Réglages particuliers
Avec le filament PLA Unite blanc, quelques pièces ont eu des difficultés d'impression : couche trop fragile au niveau des
trous horizontaux. Quelques réglages d'impression adaptés : se baser sur le profil fine 0.1mm, changer : couche
d'impression 0.12mm, vitesse d'impression 40mm, flow 110%

Yeux
Les fichiers sont fournis en stl sur thingiverse, je les ai réunis en 6 lots pour faciliter l'impression.
Le montage est expliqué, étape par étape dans cette vidéo : https://www.youtube.com/watch?v=U1c4R2EB83A

Impression

Différentes pièces :

Les fichiers sont slicés avec Cura pour Ender 3 avec une épaisseur de couches de 0.12mm

Durée d'impression

lot 1 : 40 minutes
lot 2 : 20 minutes
lot 3 : 2h20

http://www.lesporteslogiques.net/wiki/tag/impression_3d?do=showtag&tag=impression_3D
http://www.lesporteslogiques.net/wiki/tag/animatronique?do=showtag&tag=animatronique
http://www.lesporteslogiques.net/wiki/tag/marionnette?do=showtag&tag=marionnette
http://www.lesporteslogiques.net/wiki/tag/raspberry-pi?do=showtag&tag=raspberry-pi
http://www.lesporteslogiques.net/wiki/tag/electronique?do=showtag&tag=electronique
http://www.lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
http://www.lesporteslogiques.net/wiki/projets/barbichette/start
https://bechele.de/
https://bechele.de/?page_id=70
https://www.thingiverse.com/thing:2863069
https://www.thingiverse.com/thing:2781756
https://www.thingiverse.com/thing:4058084
https://bechele.de/?page_id=73
https://bechele.de/?page_id=188
https://zappedmyself.com/animatronics/bechele2-info/
https://www.thingiverse.com/thing:4058084
https://www.youtube.com/watch?v=U1c4R2EB83A
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/yeux_animatroniques_pieces_lot_couleur.png
https://lesporteslogiques.net/wiki/ressource/impression3d#utilisation_de_cura
http://www.lesporteslogiques.net/wiki/outil/imprimante_3d_creality_ender_3/start
http://www.lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique

http://www.lesporteslogiques.net/wiki/ 2 / 17

lot 4 : 2h50
lot 5 : 2h10
lot 6 : 3h05 (avec eyeball-for-iris, mais pas eyeball)

Un peu de casse au montage nécessite de nouveaux lots à imprimer

lot 7 : 1h00 (eyeball hinge et hinge frame, 1 de chaque)

Tête
Les fichiers pour la tête sont disponibles sur thingiverse, en revanche pas de vidéo cette fois pour aider au montage…

Impression

Durée d'impression

lot 1 : 2h21
lot 2 : 1h10
lot 3 : 3h23
lot 4 : 1h55
lot 5 : 1h46
lot 6 : 1h39
lot 7 : 0h09 (oubli… connecting-levers)

Yeux 2
Ce sont les yeux animés qui vont avec la tête / fichiers fournis en stl sur thingiverse, réunis en 4 lots.

Impression

Durée d'impression
Sur la carte uSD : série de fichiers bechele_oeyes_X.gcode

lot 1 : 1h31
lot 2 : 0h30
lot 3 : 3h02
lot 4 : 2h12
lot 5 : 0h11

Durée d'impression avec les réglages qui compensent le problème d'impression (série b)
Sur la carte uSD : série de fichiers bechele_oeyes_Xb.gcode

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/tete_animatronique_pieces_lot_couleur.png
https://www.thingiverse.com/thing:2781756
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/2781756_eye_mechanics_parts.png

http://www.lesporteslogiques.net/wiki/ 3 / 17

1 : 3h29
2 : 0h38
3 : 4h20
4 : 3h56
5 : 0h16

Composants et visserie

un guide bien utile pour se repérer dans le monde merveilleux de la visserie :
https://micro-modele.fr/img/cms/MICRO_VISSERIE/visserie_doc.pdf

Électronique

Raspberry Pi 3 ou 4
module électronique driver 16 canaux pour servo, à base de PCA9685 (différents possibles, exemple : HW-170 ou
MotoPi)
yeux améliorés : 7 servomoteurs miniatures, on utilise des DMS-MG90-A de DFRobot, avec une amplitude de 270°
yeux d'origine : 5 servomoteurs
tête : 5 servomoteurs
alimentation 5V à x ampères : récupération d'une alim de PC

Quincaillerie

Test des servomoteurs avec arduino
Test de 4 servomoteurs avec du matériel grove et une alimentation de 550 mA (ancien chargeur de téléphone).
L'alimentation est largement sous-dimensionnée pour utiliser 5 servomoteurs. En lisant la datasheet du servomoteur, on voit
que son courant de décrochage (stall currrent) est de 800±30 mA à 4.8V et 1100±30 mA à 6V, on peut donc dimensionner
900mA pour alimenter chaque moteur (source)… Une alim de PC de récupération pourrait fournir largement ce qu'il faut.

test_servo.ino (cliquer pour afficher le code)

test_servo.ino

/* Test servomoteurs avec seeeduino lotus + module grove PCA9685 16-Chan I2C PWM driver

 arduino 1.8.5 @ Kirin, pierre@lesporteslogiques.net / 23 nov. 2022
 + lib. Seeed PCA9685 library, https://github.com/Seeed-Studio/Seeed_PCA9685

 Grove PCA9685 : https://wiki.seeedstudio.com/Grove-16-Channel_PWM_Driver-PCA9685
 Servo MG90 à 270° (DMS-MG90-A) https://www.dfrobot.com/product-1970.html
*/

#include "PCA9685.h"
#include <Wire.h>

ServoDriver servo;

void setup() {
 Wire.begin(); // join I2C bus
 Serial.begin(9600);
 servo.init(0x7f);
}

void loop() {
 // Test avec 4 servos
 for (int i = 1; i < 5; i++) {
 servo.setAngle(i, 0);
 delay(1000);
 servo.setAngle(i, 90);
 delay(1000);
 }
}

Le sketch ci-dessous est utile pour mettre les servo en position centrale avant de les inclure dans le montage :

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/vis.png
https://micro-modele.fr/img/cms/MICRO_VISSERIE/visserie_doc.pdf
https://www.joom.com/en/products/5cd4d3318b2c370101468089
https://www.joy-it.net/en/products/RB-Moto3
https://www.dfrobot.com/product-1970.html
https://www.dfrobot.com/product-1970.html
https://forum.arduino.cc/t/how-much-power-supply-do-i-need-for-controlling-5-sg90-9g-microservo/627666
http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=0

http://www.lesporteslogiques.net/wiki/ 4 / 17

raz_servo.ino (cliquer pour afficher le code)

raz_servo.ino

/* Test / Remise à zéro de servomoteurs

 servomoteurs avec seeeduino lotus + module grove PCA9685 16-Chan I2C PWM driver
 pour programmer la lotus, choisir arduino uno dans l'IDE

 arduino 1.8.5 @ Kirin, pierre@lesporteslogiques.net / 7 déc. 2022
 + lib. Seeed PCA9685 library, https://github.com/Seeed-Studio/Seeed_PCA9685

 Grove PCA9685 : https://wiki.seeedstudio.com/Grove-16-Channel_PWM_Driver-PCA9685
 Servo MG90 à 270° (DMS-MG90-A) https://www.dfrobot.com/product-1970.html

 On peut relancer la procédure en faisant un reset de la carte
*/

#include "PCA9685.h"
#include <Wire.h>

ServoDriver servo;

boolean centerdone = false;

void setup() {
 Wire.begin(); // join I2C bus
 Serial.begin(9600);
 servo.init(0x7f);
}

void loop() {
 // Remettre les servos au centre
 if (!centerdone) {
 for (int i = 1; i < 6; i++) {
 servo.setAngle(i, 45);
 delay(2000);
 servo.setAngle(i, 135);
 delay(3000);
 servo.setAngle(i, 90);
 delay(2000);
 }
 centerdone = true;
 } else {
 delay(100);
 }
}

À noter : les servos ont une amplitude de 270°, la fonction servo.write() d'arduino prend en argument des valeurs entre 0 et
180. Dans le fichier Servo.h de la librairie servo, on peut trouver les valeurs extrèmes utilisées (ci-dessous), dont dans notre
cas 0 correspond à -135° et 180 correspond à +135°… (Ce modèle de servo fonctionne entre 500 et 2500, mais je garde les
valeurs prédéfinies, les servos n'auront pas besoin de parcourir toute leur amplitude)

#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached

Joystick
Pour enregistrer les mouvements des servos

Possible d'utiliser un de ces modèles en ajoutant les boutons

https://www.thingiverse.com/thing:3250017
https://www.thingiverse.com/thing:1276108
https://www.thingiverse.com/thing:700346

On utilise une boite de dérivation électrique avec un joystick analogique (voir photo en bas de page)

http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=1
https://www.arduino.cc/reference/en/libraries/servo/write/
https://github.com/arduino-libraries/Servo/blob/master/src/Servo.h
https://www.thingiverse.com/thing:3250017
https://www.thingiverse.com/thing:1276108
https://www.thingiverse.com/thing:700346

http://www.lesporteslogiques.net/wiki/ 5 / 17

Schéma de PacketBob

code_arduino_joystick.ino (cliquer pour afficher le code)

code_arduino_joystick.ino

// Bechele2 Joystick Code V2.1 Sept 2021
//
// Arduino code for the joystick used for programming servo movements in Bechele2 animatronic software:
// http://bechele.de/pages/english/72-0.html
//
// Based on original code written by Rolf Jethon:
// http://bechele.de/pages/english/77-0.html
//
// For more info on building this joystck:
// https://zappedmyself.com/animatronics/bechele2-info/
//
// This code sends the Joystick X & Y values and the button status to the Raspberry Pi
// Each time the number 4 (ASCII value 52) is received from Raspberry Pi the data is sent
//
// Can run on any Arduino variant (I used a NANO clone)
// - Cleaned up comments and naming
// - Added code internal pullups to simplify wiring
// - Changed the joystick averaging code to get better range of ADC values

//***PIN ASSIGNMENTS***//
#define Y_PIN A0 // Analog input pin that the X axis pot is connected to
#define X_PIN A1 // Analog input pin that the Y axis pot is connected to
#define BUTTON1_PIN 2 // Digital input pin the START button is connected to
#define BUTTON2_PIN 3 // Digital input pin the STOP button is connected to

//***CUSTOMIZE VALUES***//
#define BAUD_RATE 19200 // Baud rate for serial port
#define ALPHA_VALUE 0.9 // Averaging factor (0.1 - 1.0) higher value = faster averaging

//***VARIABLE DECLARATION***//
int xAxisValue = 496; // set X value to middle of possible range
int yAxisValue = 496; // set Y value to middle of possible range
int xAxisMax = 1022;
int yAxisMax = 1022;
int xVal;
int yVal;
int inByte = 0; // incoming serial byte
float alphaFactor = ALPHA_VALUE; // set to defined value

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/bechele2-joystick.jpg
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/bechele2-joystick.jpg
https://zappedmyself.com/animatronics/bechele2-info/
http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=3

http://www.lesporteslogiques.net/wiki/ 6 / 17

//***MICROCONTROLLER CONFIGURATION***//
void setup() {
 pinMode(BUTTON1_PIN, INPUT_PULLUP);
 pinMode(BUTTON2_PIN, INPUT_PULLUP);
 Serial.begin(BAUD_RATE); // Setup serial port speed
}

//***START OF MAIN LOOP***//
void loop() {
 xAxisValue = alphaFactor * analogRead(X_PIN) + (1 - alphaFactor) * xAxisValue; // Get Xaxis value and average it
 delay(3);
 yAxisValue = alphaFactor * analogRead(Y_PIN) + (1 - alphaFactor) * yAxisValue; // Get Yaxis value and average it
 int button1State = digitalRead(BUTTON1_PIN); // Get Button 1 state
 int button2State = digitalRead(BUTTON2_PIN); // Get Button 2 state

 xVal = xAxisMax - xAxisValue;
 yVal = yAxisMax - yAxisValue;

 // Test
 /*
 Serial.print(xVal);
 Serial.print(" ");
 Serial.print(yVal);
 Serial.print(" ");
 Serial.print(button1State);
 Serial.print(" ");
 Serial.println(button2State);

 */
 // Test 2 (graphique)
 Serial.print(xVal);
 Serial.print(",");
 Serial.print(yVal);
 Serial.print(",");
 Serial.print(button1State * 1000);
 Serial.print(",");
 Serial.println(button2State * 1000);

 delay(50);
 /*
 if (Serial.available() > 0) { // Check to see if serial data request has been received
 inByte = Serial.read(); // Store serial data
 if (inByte == 52) { // Send data values if ASCII '4' is received
 Serial.print(xAxisValue);
 Serial.print(" ");
 Serial.print(yAxisValue);
 Serial.print(" ");
 Serial.print(button1State);
 Serial.print(" ");
 Serial.println(button2State);
 }
 inByte = 0; // Clear inByte value for next command
 }*/
}

Utilisation du module MotoPi RB-Moto3

Module pour Raspberry Pi : documentation / lien fabricant

En fait, je ne sais pas si ça peut marcher avec le montage, ce module fonctionne avec une librairie python, se connecte en
I2C alors que le code du projet «Bechele» est en perl…

Arduino + PCA9685
Un module multiplexeur à base de PCA9685 permet de commander jusqu'à 16 servomoteurs, on peut chaîner plusieurs

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/rb-moto3.jpg
https://lesporteslogiques.net/materiel/__MODULES/servo_driver_16channels_joy-it_motopi_RB-Moto3/
https://www.joy-it.net/en/products/RB-Moto3

http://www.lesporteslogiques.net/wiki/ 7 / 17

module pour commander encore plus de servomoteurs. La communication avec arduino se fait en I2C.

Le condensateur électrochimique du module PCA9685 est adapté au nombre de servomoteurs utilisés : compter 100 µF par
moteur

Photo Adafruit

Code d'exemple avec la lib. Adafruit PWM Servo:

arduino_servo_pca9685.ino (cliquer pour afficher le code)

arduino_servo_pca9685.ino

/* Test servo

 arduino 1.8.5 @ Kirin, pierre@lesporteslogiques.net / 27 mars 2023
 + lib. Adafruit PWM Servo https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library

 Réglages de la carte PCA9685
 Testé avec Grove Beginner Kit (vu Comme Arduino Genuino/Uno)

 Sans réglage, ça fonctionne corectement à l'adresse I2C : 0x40
 */

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

// called this way, it uses the default address 0x40
Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

// Depending on your servo make, the pulse width min and max may vary, you
// want these to be as small/large as possible without hitting the hard stop
// for max range. You'll have to tweak them as necessary to match the servos you
// have!

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/arduino_servo_pca9685.jpg
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/arduino_servo_pca9685.jpg
https://learn.adafruit.com/16-channel-pwm-servo-driver/hooking-it-up
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=4

http://www.lesporteslogiques.net/wiki/ 8 / 17

#define SERVOMIN 150 // This is the 'minimum' pulse length count (out of 4096)
#define SERVOMAX 600 // This is the 'maximum' pulse length count (out of 4096)
#define USMIN 600 // This is the rounded 'minimum' microsecond length based on the minimum pulse of 150
#define USMAX 2400 // This is the rounded 'maximum' microsecond length based on the maximum pulse of 600
#define SERVO_FREQ 50 // Analog servos run at ~50 Hz updates

// our servo # counter
uint8_t servonum = 0;
uint8_t servonum_max = 1;

void setup() {
 Serial.begin(9600);
 Serial.println("8 channel Servo test!");

 pwm.begin();
 /*
 * In theory the internal oscillator (clock) is 25MHz but it really isn't
 * that precise. You can 'calibrate' this by tweaking this number until
 * you get the PWM update frequency you're expecting!
 * The int.osc. for the PCA9685 chip is a range between about 23-27MHz and
 * is used for calculating things like writeMicroseconds()
 * Analog servos run at ~50 Hz updates, It is importaint to use an
 * oscilloscope in setting the int.osc frequency for the I2C PCA9685 chip.
 * 1) Attach the oscilloscope to one of the PWM signal pins and ground on
 * the I2C PCA9685 chip you are setting the value for.
 * 2) Adjust setOscillatorFrequency() until the PWM update frequency is the
 * expected value (50Hz for most ESCs)
 * Setting the value here is specific to each individual I2C PCA9685 chip and
 * affects the calculations for the PWM update frequency.
 * Failure to correctly set the int.osc value will cause unexpected PWM results
 */
 pwm.setOscillatorFrequency(27000000);
 pwm.setPWMFreq(SERVO_FREQ); // Analog servos run at ~50 Hz updates

 delay(10);
}

// You can use this function if you'd like to set the pulse length in seconds
// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. It's not precise!
void setServoPulse(uint8_t n, double pulse) {
 double pulselength;

 pulselength = 1000000; // 1,000,000 us per second
 pulselength /= SERVO_FREQ; // Analog servos run at ~60 Hz updates
 Serial.print(pulselength); Serial.println(" us per period");
 pulselength /= 4096; // 12 bits of resolution
 Serial.print(pulselength); Serial.println(" us per bit");
 pulse *= 1000000; // convert input seconds to us
 pulse /= pulselength;
 Serial.println(pulse);
 pwm.setPWM(n, 0, pulse);
}

void loop() {
 // Drive each servo one at a time using setPWM()
 Serial.println(servonum);
 for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++) {
 pwm.setPWM(servonum, 0, pulselen);
 }

 delay(500);
 for (uint16_t pulselen = SERVOMAX; pulselen > SERVOMIN; pulselen--) {
 pwm.setPWM(servonum, 0, pulselen);
 }

 delay(500);

 // Drive each servo one at a time using writeMicroseconds(), it's not precise due to calculation rounding!
 // The writeMicroseconds() function is used to mimic the Arduino Servo library writeMicroseconds() behavior.
 for (uint16_t microsec = USMIN; microsec < USMAX; microsec++) {
 pwm.writeMicroseconds(servonum, microsec);
 }

 delay(500);
 for (uint16_t microsec = USMAX; microsec > USMIN; microsec--) {
 pwm.writeMicroseconds(servonum, microsec);
 }

 delay(500);

 servonum++;
 if (servonum > servonum_max) servonum = 0; // Testing the first 8 servo channels
}

Rpi + Python + PCA9685
Le montage se compose d'un Raspberry Pi qui communique, via I2C sur ses broches GPIO, à un contrôleur de 16 servos basé
sur la puce PCA9685. Les servosmoteurs sont reliés à ce circuit.

http://www.lesporteslogiques.net/wiki/ 9 / 17

Multiplexeur PCA9685

Montage

Source du schéma : https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/hooking-it-up

Pour le brochage du Raspberry Pi 4, voir :
https://lesporteslogiques.net/wiki/materiel/raspberry_pi/start#raspberry_pi_4_model_b

Préparation du Raspberry Pi pour I2C

Installation de paquets

sudo apt-get install -y python-smbus # support d'I2C dans python
sudo apt-get install -y i2c-tools # entre autre pour scanner le port I2C

Configurer le support par le kernel

sudo raspi-config # choisir interface options/I2C/activer l'interface

Puis redémarrer

sudo reboot

Ensuite on peut tester que le module PCA9685 est bien branché

sudo i2cdetect -y 1 # Le port I2C numéro 1 est utilisé sur les rpi > 512 MB de RAM

Ce qui devrait afficher (les adresses des ports utilisés sont indiquées)

Circuit complet

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/16-channel-pwm-controller-pca9685-module-overview.jpg
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/adafruit_raspi_pca9685_i2c_with_servo.png
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/hooking-it-up
https://lesporteslogiques.net/wiki/materiel/raspberry_pi/start#raspberry_pi_4_model_b
http://www.lesporteslogiques.net/wiki/_detail/openatelier/projet/tete_animatronique/i2cdetect_resultat.png?id=openatelier%3Aprojet%3Atete_animatronique

http://www.lesporteslogiques.net/wiki/ 10 / 17

Schéma de Rolf Jethon

Communication I2C vers les servomoteurs

En utilisant Adafruit Servokit Library : https://docs.circuitpython.org/projects/servokit/en/latest/

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit

Installation

sudo pip3 install adafruit-circuitpython-servokit
python3.7 -m pip install adafruit-circuitpython-servokit

(Dans l'IDE geany, penser à changer les chemins vers l'exécutable de python, menu “construire” > “définir les outils de
construction”)

test_servo_pca9685.py (cliquer pour afficher le code)

test_servo_pca9685.py

import time
from adafruit_servokit import ServoKit

Set channels to the number of servo channels on your kit.
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=16)

kit.servo[0].angle = 180
#kit.continuous_servo[1].throttle = 1
time.sleep(1)
#kit.continuous_servo[1].throttle = -1
time.sleep(1)
kit.servo[0].angle = 0
#kit.continuous_servo[1].throttle = 0

Test des servomoteurs

Définir sur quelles broches sont reliés les servomoteurs, fixer minimum et maximum pour chacun.

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_schema_general_bechele_proto1.png
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_schema_general_bechele_proto1.png
https://bechele.de/
https://docs.circuitpython.org/projects/servokit/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit
http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=5

http://www.lesporteslogiques.net/wiki/ 11 / 17

test_python_pca9685_servomoteurs.py (cliquer pour afficher le code)

test_python_pca9685_servomoteurs.py

import time
from adafruit_servokit import ServoKit

Set channels to the number of servo channels on your kit.
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=16)

Correspondances (gauche/droite pour la tête)
commands du côté droit inversées
0 : sourcil gauche (50, 135)
1 : sourcil droit (inv) (135, 50)
2 : machoire basse (?, ?)
3 : oeil gauche (50, 130)
4 : oeil droit (50, 130)
5 : paupière gauche () PROBLEME
6 : paupière droite () PROBLEME
7 : bouche gauche (50, 110) PROB : refaire mécanisme
8 : bouche droite (inv) (110, 50) PROB : refaire mécanisme
9 : yeux (50, 130)

for boucle in range(0, 3) :
 kit.servo[0].angle = 135
 kit.servo[1].angle = 50
 kit.servo[2].angle = 50
 kit.servo[3].angle = 130
 kit.servo[4].angle = 130
 # ~ kit.servo[5].angle = 80
 # ~ kit.servo[6].angle = 80
 kit.servo[7].angle = 50
 kit.servo[8].angle = 110
 kit.servo[9].angle = 50
 time.sleep(1)

 kit.servo[0].angle = 50
 kit.servo[1].angle = 135
 kit.servo[2].angle = 120
 kit.servo[3].angle = 50
 kit.servo[4].angle = 50
 # ~ kit.servo[5].angle = 100
 # ~ kit.servo[6].angle = 100
 kit.servo[7].angle = 110
 kit.servo[8].angle = 50
 kit.servo[9].angle = 130
 time.sleep(1)

 kit.servo[0].angle = 90
 kit.servo[1].angle = 90
 kit.servo[2].angle = 90
 kit.servo[3].angle = 90
 kit.servo[4].angle = 90
 # ~ kit.servo[5].angle = 90
 # ~ kit.servo[6].angle = 90
 kit.servo[7].angle = 90
 kit.servo[8].angle = 90
 kit.servo[9].angle = 90
 time.sleep(2)

Expressions

Test de quelques expressions du visage animatronique

expressions.py (cliquer pour afficher le code)

expressions.py

import time
from adafruit_servokit import ServoKit

Set channels to the number of servo channels on your kit.
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=16)

Correspondances (gauche/droite pour la tête)
commands du côté droit inversées
0 : sourcil gauche (50, 135)
1 : sourcil droit (inv) (135, 50)
2 : machoire basse (?, ?)
3 : oeil gauche (50, 130)
4 : oeil droit (50, 130)
5 : paupière gauche () PROBLEME
6 : paupière droite () PROBLEME

http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=6
http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=7

http://www.lesporteslogiques.net/wiki/ 12 / 17

7 : bouche gauche (50, 110) PROB : refaire mécanisme
8 : bouche droite (inv) (110, 50) PROB : refaire mécanisme
9 : yeux (50, 130)

def moue():
 kit.servo[0].angle = 50
 kit.servo[1].angle = 135
 kit.servo[2].angle = 120
 kit.servo[3].angle = 70
 kit.servo[4].angle = 110
 # ~ kit.servo[5].angle = 100
 # ~ kit.servo[6].angle = 100
 kit.servo[7].angle = 110
 kit.servo[8].angle = 50
 kit.servo[9].angle = 130
 time.sleep(2)

def sleep():
 kit.servo[0].angle = 90
 kit.servo[1].angle = 90
 kit.servo[2].angle = 90
 kit.servo[3].angle = 90
 kit.servo[4].angle = 90
 # ~ kit.servo[5].angle = 90
 # ~ kit.servo[6].angle = 90
 kit.servo[7].angle = 90
 kit.servo[8].angle = 90
 kit.servo[9].angle = 90
 time.sleep(2)

def louche():
 kit.servo[0].angle = 135
 kit.servo[1].angle = 50
 kit.servo[2].angle = 120
 kit.servo[3].angle = 130
 kit.servo[4].angle = 50
 # ~ kit.servo[5].angle = 100
 # ~ kit.servo[6].angle = 100
 kit.servo[7].angle = 110
 kit.servo[8].angle = 50
 kit.servo[9].angle = 130
 time.sleep(2)

louche()
moue()
sleep()
louche()
sleep()

Réception OSC

Trouver l'adresse IP du RPi

hostname -I

Pour tester la réception OSC : écouter le traffic sur le port UDP 12345

nc -l -u 12345

Version du système/kernel installé

hostnamectl

Installer python OSC : pip3 install python-osc

Communication série avec le joystick arduino

Attention aux niveaux de tension si connexion directe aux broches GPIO 3V3 != 5V)

Dans le joystick, un arduino envoie des informations sur le port USB-série vers le raspberry pi, à 19200 bps
On peut vérifier que le port série est bien reconnu avec lsusb
Et utiliser ls /dev/tty* pour voir si le port utilisable Penser aussi à ajouter l'utilisateur au groupe dialout :

sudo adduser pi dialout
python3 -m pip install pyserial # installer les bibliothèques

Ensuite ce sketch arduino :

http://www.lesporteslogiques.net/wiki/ 13 / 17

python_serial_read.py (cliquer pour afficher le code)

python_serial_read.py

#!/usr/bin/env python3

source : https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
arduino relié à /dev/ttyUSB0 (pour trouver le port : ls /dev/tty*)
baud rate à 19200, correspond à celui défini dans arduino
timeout : durée allouée à la lecture série
readline() : lit jusqu'au caractère de fin de ligne
decode('utf- 8') : transforme les bytes réçues dans le type souhaité
rstrip() : retire les caractères de fin de ligne
import serial
if __name__ == '__main__':
 ser = serial.Serial('/dev/ttyUSB0', 19200, timeout=1)
 # vider le buffer série en début de communication
 ser.reset_input_buffer()
 while True:
 # y a t'il des données en attente ?
 if ser.in_waiting > 0:
 line = ser.readline().decode('utf-8').rstrip()
 print(line)

Voir aussi : https://www.aranacorp.com/fr/communication-serie-entre-raspberry-pi-et-arduino/

Pour adapter les niveaux logiques, voir :

https://www.okdo.com/project/level-shifting/?ok_ts=1680009581943
https://raspberrypi.stackexchange.com/questions/77176/raspberry-pi-gpio-input-voltage-limit

Alimentation
A base d'une alimentation d'ordinateur ATX à 24 broches : https://en.wikipedia.org/wiki/ATX#Power_supply

Montage
Pour le montage du mécanisme des yeux, se reférer à cette vidéo : https://www.youtube.com/watch?v=U1c4R2EB83A

Il est nécessaire de percer et tarauder les pièces avant le montage :

Impression résine
On imprime des pièces en résine avec la anycubic photon mono 4K (Ces pièces sont trop fragiles en impression 3D PLA).
Deux plateaux sont préparés pour l'impression.

http://www.lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=8
https://www.aranacorp.com/fr/communication-serie-entre-raspberry-pi-et-arduino/
https://www.okdo.com/project/level-shifting/?ok_ts=1680009581943
https://raspberrypi.stackexchange.com/questions/77176/raspberry-pi-gpio-input-voltage-limit
https://en.wikipedia.org/wiki/ATX#Power_supply
https://www.youtube.com/watch?v=U1c4R2EB83A
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/yeux_plan_de_percements.png
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/yeux_plan_de_taraudage.png
http://www.lesporteslogiques.net/wiki/outil/imprimante_3d_anycubic_photon_mono_4k/start

http://www.lesporteslogiques.net/wiki/ 14 / 17

Et comme ça marche plutôt bien, on en fait 2 autres!

Et un petit dernier. (nb: ça aurait été plus malin de grouper les pièces par catégorie sur chaque plateau)

Installation du raspberry pi
Le projet est fourni avec une image pour raspberry pi 3 mais vu que c'est difficile de se procurer ce genre de carte en ce
moment, on part sur une installation manuelle sur un raspberry pi 4

Version du Pi 4 : Raspbian 10 buster (lsb_release -a)

téléchargement du fichier https://bechele.de/wp-content/uploads/2022/07/bechele2.tar.gz (depuis
https://bechele.de/?page_id=80)

Installation des bibliothèques nécessaires

sudo apt update
sudo apt install cpanminus
sudo apt install wiringpi
sudo apt install alsa-utils
sudo apt install mpg123
sudo apt install i2c-tools
sudo apt install perl5 # déjà installé
sudo apt install perl-device-serialport # ne fonctionne pas
sudo apt install libdevice-serialport-perl
sudo cpanm strict
sudo cpanm Device::SerialPort
sudo apt install ncurses-base ncurses-bin
sudo apt install libncurses5-dev libncursesw5 libncursesw5-dev
sudo cpanm Curses::UI
sudo cpanm WiringPi::API
sudo cpanm File::Find::Rule
sudo cpanm Device::PWMGenerator::PCA9685
sudo cpanm Audio::Play::MPG123
sudo cpanm Time::HR

Installation des scripts

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_1.png
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_2.png
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_3.png
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_4.png
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_5.png
https://bechele.de/wp-content/uploads/2022/07/bechele2.tar.gz
https://bechele.de/?page_id=80

http://www.lesporteslogiques.net/wiki/ 15 / 17

les fichiers téléchargés sont dans le dossier /home/pi/bechele, on les copie dans les bons dossiers de /usr avec sudo.

sudo cp /home/pi/bechele/usr/lib/systemd/system/runlive.service /usr/lib/systemd/system/
sudo cp -R /home/pi/bechele/usr/local/bin/* /usr/local/bin/

Les fichiers à copier dans /home sont copiés manuellement.

Configuration du Raspberry Pi

Il faut activer la communication I2C, pour cela

sudo raspi-config
choisir dans le menu : interface, puis I2C

Test pour commander les moteurs en python

Une fois le PCA9685 relié à 2 moteurs et au rpi, le rpi configuré pour communiquer en I2C, un premier test en python

Journal
Journal partiel, pour poster quelques photos sur des étapes importantes

7 décembre 2022 : pour le software : A. teste les capacités du client léger pour voir s'il est capable de traiter de l'image
vidéo en CV, plutôt oui! L'install. d'OpenFrameworks + CV n'est pas triviale mais à la fin ça fonctionne plutôt bien… pour le
hardware : pas mal de petite quincaillerie pour laquelle il manque toujours une pièce, aujourd'hui c'était de tige filetée de
3mm, les moteurs sont installés, le prototype prend forme, ça mérite une photo.

4 janvier 2023 : en continuant le montage, je casse une pièce fragile, à réimprimer donc… c'est compliqué de trouver des
vis DIN915 mais on ne peut pas vraiment s'en passer (trouvées finalement sur la boutique en ligne d'un vendeur du
marketplace d'amazon).

18 janvier 2023 : la reconnaissance de visage fonctionne bien sur le client léger qu'on envisageait! A. a écrit du code pour
lisser les mouvements et différencier différents types de sourires. Montage du joystick pour piloter les yeux et enregistrer les
séquences.

2 mars 2023 : TODO photos des prototypes d'animatronique, l'impression 3D en PLA est trop fragile, il va falloir penser à
tout refaire en résine…

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20221207_proto_en_construction.jpg
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_montage_joystick.jpg
http://www.lesporteslogiques.net/wiki/_media/projets/barbichette_application.jpg

http://www.lesporteslogiques.net/wiki/ 16 / 17

14 juin 2023 : électronique ok, prototype construit et actionné par script python depuis le raspberry, une vidéo des
premiers essais d'expression

 20230614_barbichette_prototype.mp4

15 juin 2023 scripts (à renommer en .gz)

20230615_scripts_barbichette.gz.txt

Prototype 1

16 juin 2023 scripts :

20230616_scripts.gz.txt
(à renommer en .gz)

Quelques détails :

ui_servo_expressions.py contrôle par interface graphique (sliders, etc.) des servomoteurs de la tête animatronique

osc_envoi_simulation.py simulation d'envoi OSC (utile si l'ordi de détection n'est pas relié)

osc_reception_test.py vérification que les messages OSC sont bien reçus (pas d'action sur les servos)

osc_reception_tracking_visage.py script principal, reçoit les messages envoyés par l'ordi de détection et agit sur les
servos en conséquence

serie_read_test.py réception des messages série d'arduino

servo_expressions.py (obsolète) quelques tests d'expressions

servo_paupieres_test.py (test seulement)

servo_pca9685_test.py (test seulement, I2C)

Parfois une erreur 121 dans I2C / Rpi / Python

bus overloadé
fils trop longs (30cm max pour I2C, capacitance maximum de 400 pF dépassée)
pull ups trop forts (il y a déjà des pull-ups dans les broches GPIO du Pi) → supprimer ceux de la carte
cf. https://raspberrypi.stackexchange.com/questions/124453/error-121-remote-i-o-error-in-smbus-py-call

Et quelques notes

TODO / code : ajouter la bouche dans le script ui_servo_expressions.py
TODO / code : contrôle des mouvements par pure data (pratique pour séquencer)
TODO / install : solidariser caméra et robot /!\ captation audio et moteurs

http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20230302_barbichette.jpg
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20230614_barbichette_prototype.mp4?cache=
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_20230614_175450.jpg
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20230615_scripts_barbichette.gz.txt
http://www.lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20230616_scripts.gz.txt
https://raspberrypi.stackexchange.com/questions/124453/error-121-remote-i-o-error-in-smbus-py-call

http://www.lesporteslogiques.net/wiki/ 17 / 17

TODO / install : enceinte derrière le robot
TODO / tête : refixer paupière, limer quelques pièces
TODO / install : mode veille ?

Nécessite un réseau local dans cette version!

Ressources
Sur l'animatronique : https://zappedmyself.com/animatronics/animatronic-projects/
Une autre paire d'yeux : https://www.instructables.com/DIY-Compact-3D-Printed-Animatronic-Eye-Mechanism/

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique
Article mis à jour: 2025/10/07 15:45

https://zappedmyself.com/animatronics/animatronic-projects/
https://www.instructables.com/DIY-Compact-3D-Printed-Animatronic-Eye-Mechanism/
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique

	Tête de marionnette animatronique
	Réglages particuliers
	Yeux
	Impression

	Tête
	Impression

	Yeux 2
	Impression

	Composants et visserie
	Test des servomoteurs avec arduino
	Joystick
	Utilisation du module MotoPi RB-Moto3
	Arduino + PCA9685
	Rpi + Python + PCA9685
	Multiplexeur PCA9685
	Montage
	Préparation du Raspberry Pi pour I2C

	Circuit complet
	Communication I2C vers les servomoteurs
	Test des servomoteurs
	Expressions
	Réception OSC
	Communication série avec le joystick arduino

	Alimentation
	Montage
	Impression résine
	Installation du raspberry pi
	Test pour commander les moteurs en python

	Journal
	Prototype 1

	Ressources

