WIKI Les Portes Logiques
Adresse de I'article : http://www.lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376063
Article mis a jour le : 2019/12/03 13:27 / Imprimé le 2026/02/05 09:56

Datamoshing
La méthode "classique"

Et pourquoi pas en temps réel ?

Mode 1

Les pixels de couleur (I'image de fond) est mise-a-jour a intervalle réguliere (définit par la constante REFRESH_INTERVAL)
et le masque de déplacement est mis-a-jour en continue. C'est le mode qui se rapproche le plus de I'effet “bloom” qu'on
peut obtenir en datamoshing classique (par corruption de fichier avi). Pour obtenir un résultat au plus prés de I'effet original,
il faudrait calculer les vecteurs du masque de déplacement en fonction du déplacement réel des pixels d'une image a
I'autre. On calculerait ainsi un P-Frame, qu'on viendrait ensuite appliquer sur notre image de fond. Par simplicité, dans le
code ci-dessous, le masque du déplacement est calculé en fonction de la couleurs des pixels du flux vidéo. Le canal rouge
définit le déplacement horizontal et le canal vert définit le déplacement vertical.

Mode 1 (cliquer pour afficher le code)

datamoshing_1.pde

processing.video.*

//

// PARAMETERS

//

int REFRESH_INTERVAL

float START_DISPLACEMENT
float SPEED

boolean INVERT_COLORS = false

Capture video

PVector vectorMap
PImage display

PImage source_img

int source_x, source y
int index

float amp

int last_update

void setup
size ,
video Capture , width, height
video.start
video.available
delay

video. read

vectorMap PVector|video.pixels.length
updateDisplacementMap (vectorMap, video
display createImage(width, height, RGB
source_img video.copy

amp = START_DISPLACEMENT

last_update = millis

void updateDisplacementMap(PVector[] vector_map, PImage map_img
map_img.loadPixels
float x_off, y off
int j j<height; j
int 1 i<width; i

index = i + width*j

color displacementPix = map_img.pixels[index

// Use red channel for horizontal displacement

// and green channel for vertical displacement

x_off displacementPix OxFF
y_off displacementPix OxFF
vector_map|index PVector(x_off, y off

http://www.lesporteslogiques.net/wiki/ 1/3


http://www.lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=0
http://www.lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376063

void draw
video.available
video. read

updateDisplacementMap (vectorMap, video
millis last_update > REFRESH_INTERVAL
source_img = video.copy
source_img.loadPixels
last_update = millis
amp START_DISPLACEMENT

index = 0

int j=0; j<display.height; j

int i=0; i<display.width; i
source_x round (amp * vectorMap[index].x float(i
source_y round(amp * vectorMap[index].y float(j

source_x

0

source_x display.width

source_x

display.width

source_x display.width

source_y

0

source_y display.height

source_y

display.height

source_y display.height

display.pixels[index source_img.pixels[display.width*source_y

index
display.updatePixels
INVERT_COLORS) dis
image(display, 0, 0
amp SPEED
void mouseClicked
saveFrame("pic-###.png

accordion
panel

Mode 2

play.filter (INVERT

source_x

Cette fois c'est le fond (les pixels de couleur) qui est continuellement mis-a-jour et le masque de déformation ne change que
de temps en temps. Vous pouvez ajuster la fréquence de mise-a-jour du masque de déformation en modifiant la constante

REFRESH_ INTERVAL.

Mode 2 (cliquer pour afficher le code)

datamoshing_2.pde

processing.video.

//

// PARAMETERS

//

float START _DISPLACEMENT
float SPEED = 2.5

int REFRESH_INTERVAL = 1
boolean INVERT_COLORS

Capture video

PVector[| vectorMap
PImage display

PImage source_img

int source_x, source_y
int index

float amp

int last_update

void setup
size (1024, 768
video Capture

video.start

*

800.0

5000; // in milliseconds
false

, width, height

video.available

delay (100

video. read
vectorMap PVecto

rivideo.pixels.length

http://www.lesporteslogiques.net/wiki/


http://www.lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=1

updateDisplacementMap (vectorMap, video
display = createImage(width, height, RGB
source_img video.copy

amp = START_DISPLACEMENT

last_update = millis

void updateDisplacementMap(PVector[] vector_map, PImage map_img
map_img. loadPixels
float x_off, y off
int j=0; j<height; j
int i=0; i<width; i
index = i + width*j
color displacementPix = map_img.pixels[index
// Use red channel for horizontal displacement
// and green channel for vertical displacement
x_off 0.5 displacementPix 16 OxFF 255.0
y off 0.5 displacementPix 8 & OxFF 255.0

vector _map|index PVector(x _off, y off
void draw
video.available
video. read
millis last_update > REFRESH_INTERVAL

// Update vectorMap
updateDisplacementMap(vectorMap, video
last_update = millis

amp = START_DISPLACEMENT

INVERT_COLORS) video.filter(INVERT

index = 0
int j=0; j<display.height; j
int i=0; i<display.width; i
source_x round(amp * vectorMaplindex].x float(i
source_y round(amp * vectorMap[index].y float(j
source_x < 0
source_x display.width
source_x display.width
source_x display.width
source_y 0
source_y display.height
source_y display.height
source_y display.height

display.pixels[index video.pixels[display.width*source_y source_x
index

display.updatePixels

image(display, 0, 0

amp SPEED

void mouseClicked
saveFrame("pic-###.png"

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376063
Article mis a jour: 2019/12/03 13:27

http://www.lesporteslogiques.net/wiki/


http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376063

	Datamoshing
	La méthode "classique"
	Et pourquoi pas en temps réel ?
	Mode 1
	Mode 2



