
WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/recherche/residence_infra/start?rev=1732294971
Article mis à jour le : 2024/11/22 18:02 / Imprimé le 2026/02/01 23:19

http://www.lesporteslogiques.net/wiki/ 1 / 15

INFRA
Infra-Documentation (ExSitu)
Test de l'outil Multitude fraîchement développer par Laurent et permettant de collecter du son directement depuis une appli
web, de l'archiver et de le rediffuser.

Le résultat sur 4 jours de résidence : https://multitude.exsitu.xyz/v/visu/1931309934af589f4

Démonstration de la diffusion sur 7 enceintes :

Gitlab : https://gitlab.com/losylam/multitude

Laurent
Trucheteries : pour faire des trucheteries au plotter ou à la brodeuse, il faut joindre des chemins disjoints avec vpype :

vpype read truchet_094.svg linemerge linesimplify -t 0.05 write truchet_94_merge.svg

Infrabuble

https://dev.laurent-malys.fr/bacasable/infra/

Multitude

https://multitude.labomedia.org/
https://multitude.exsitu.xyz/v/map/19255da86d5b11f61

Dessins génératifs

Broderie + upcycling : https://www.instagram.com/p/C58HraKiuYE/?img_index=1
Trucs à broder: https://dev.laurent-malys.fr/harmono-bro/

Infra PickUp

https://multitude.exsitu.xyz/v/visu/1931309934af589f4
https://gitlab.com/losylam/multitude
https://dev.laurent-malys.fr/bacasable/infra/
https://multitude.labomedia.org/
https://multitude.exsitu.xyz/v/map/19255da86d5b11f61
https://www.instagram.com/p/C58HraKiuYE/?img_index=1
https://dev.laurent-malys.fr/harmono-bro/
http://www.lesporteslogiques.net/wiki/recherche/residence_infra/start?rev=1732294971

http://www.lesporteslogiques.net/wiki/ 2 / 15

Profiter de ces beaux jours d'automne pour se chauffer au néons et ressortir la petite bobineuse pour créer un mirco

la base infrastructurelle

Deux disques de cp plaqué de 3 mm découper à la scie cloche
Un aimant Alnico de 10mm de diamètre
Du fil enamel de 0,063mm de diamètre
Une plaque rectangulaire pour insérer les œillets et fixer le câbles audio

le bobinage

Un petit programme arduino pour compter les tour de bobines (grâce à un aimant placer sur l'axe de rotation et
interrupteur reed)

récupérer ici : https://forum.arduino.cc/t/simple-pulse-counter/519930
Environs 3500 tours

assemblage

La bobine et la base sont collés à l'epoxy

http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup5.jpg?id=recherche%3Aresidence_infra%3Astart
https://ressources.labomedia.org/bobineuse?s
https://forum.arduino.cc/t/simple-pulse-counter/519930
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup0.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup1.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup2.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup3.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup4.jpg?id=recherche%3Aresidence_infra%3Astart

http://www.lesporteslogiques.net/wiki/ 3 / 15

trempage

Pour donner à l'ensemble un peu d'homogénéité et surtout protéger la bobine le tout est laisser trempé dans de la
paraffine jusqu'à temps qu'il n'y ai plus de petites bulles

essai infrabassique avec retour d'informations

Ça fonctionne plutôt bien au niveau des infras
Ajout d'un second micro (caché sous le scotch bleu)
Câblage du gros micro et du petit avec un ampli mono 7W pour créer un feedback de résonnances

Infra graphique
Dérive dans les images semi-graphiques. Avant le graphisme «hi-res». Journal : infra-graphique

http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup6.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup7.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup10.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup8.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup9.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/_detail/recherche/residence_infra/ifrapickup11.jpg?id=recherche%3Aresidence_infra%3Astart
http://www.lesporteslogiques.net/wiki/recherche/residence_infra/infra_graphique

http://www.lesporteslogiques.net/wiki/ 4 / 15

Quaternion
Exploration des quaternions et de la modélisation procedurale avec Processing

Une vidéo qui m'a bien aidée à comprendre le ce truc : https://www.youtube.com/watch?v=bKd2lPjl92c

Les sketchs Processing ci-dessous dépendent de façon importante sur deux librairies non officielles:

QueasyCam (modifié), pour la navigation dans l'espace en 3D →
https://github.com/gweltou/queasycam/tree/master/distribution/queasycam-6/download/
LibAvatar, pour l'intégration des classes de LibGDX dans Processing →
https://github.com/gweltou/Processing-libAvatar/blob/2.0/distribution/libAvatar-3/download/libAvatar.zip

Vous pouvez naviguer dans l'espace 3D avec les touches ZQSDA et E . Affichage en mode filaire avec W .

iteration1.pde

import queasycam.*;
import com.badlogic.gdx.math.*;
import nervoussystem.obj.*;

QueasyCam cam;

static final Vector3 xAxis = new Vector3(1.0, 0.0, 0.0);
float rootSize = 8;
int numSeg = 128;

Segment root = new Segment(null, 10, new Quaternion());

public void setup() {
 fullScreen(P3D);

 cam = new QueasyCam(this, 1, 9999);
 cam.key_forward = 'o';
 cam.key_left = 'k';
 cam.key_backward = 'l';
 cam.key_right = 'm';
 cam.key_up = 'i';
 cam.key_down = 'p';

 sphereDetail(16);

 Segment c1 = root.branch(rootSize, new Quaternion().setEulerAngles(0, 0, -100));
 Segment c2 = root.branch(rootSize, new Quaternion().setEulerAngles(120, 0, -100));
 Segment c3 = root.branch(rootSize, new Quaternion().setEulerAngles(240, 0, -100));
 for (int i=0; i<numSeg; i++) {
 c1 = c1.branch(rootSize * pow(1.0-i/(20.0*numSeg), i), new Quaternion());
 c2 = c2.branch(rootSize * pow(1.0-i/(20.0*numSeg), i), new Quaternion());
 c3 = c3.branch(rootSize * pow(1.0-i/(20.0*numSeg), i), new Quaternion());
 }

 root.update();
}

public void draw() {
 checkKeys();

https://www.youtube.com/watch?v=bKd2lPjl92c
https://github.com/gweltou/queasycam/tree/master/distribution/queasycam-6/download/
https://github.com/gweltou/Processing-libAvatar/blob/2.0/distribution/libAvatar-3/download/libAvatar.zip
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment

http://www.lesporteslogiques.net/wiki/ 5 / 15

 background(255);
 lights();

 noStroke();
 translate(width/2, height/2);

 sphere(50);

 root.draw();
}

void checkKeys() {
 if (keyPressed == false)
 return;

 float step = 0.1;
 Quaternion rotation = new Quaternion();
 if (key == 'a') {
 rotation.setEulerAngles(-step, 0.0, 0.0);
 }
 if (key == 'z') {
 rotation.setEulerAngles(step, 0.0, 0.0);
 }
 if (key == 'q') {
 rotation.setEulerAngles(0.0, -step, 0.0);
 }
 if (key == 's') {
 rotation.setEulerAngles(0.0, step, 0.0);
 }
 if (key == 'w') {
 rotation.setEulerAngles(0.0, 0.0, -step);
 }
 if (key == 'x') {
 rotation.setEulerAngles(0.0, 0.0, step);
 }

 for (Segment seg : root.children) {
 while (seg.hasChildren()) {
 seg.localRot.mul(rotation).nor();
 seg = seg.children.get(0);
 }
 seg.localRot.mul(rotation).nor();
 }

 root.update();
}

/*****************************
** class Segment **
*****************************/

public class Segment {
 static final int faces = 32;
 static final float l2b = 10.0; // Length to base ratio

 protected Segment parent = null;
 protected Vector3 head = new Vector3();
 protected Vector3 rootWorldPos = null;

 private Quaternion localRot = new Quaternion(); // Rotation from parent Segment
 private Quaternion globalRot = new Quaternion(); // Total rotation in world space
 private float len;
 private float baseRadius;
 private Vector3[] points = new Vector3[faces];
 private Vector3 tmpVec = new Vector3();

 private ArrayList<Segment> children = new ArrayList();

 public Segment(Segment parent, float len, Quaternion rot) {
 this.parent = parent;
 if (parent == null) {
 rootWorldPos = new Vector3();
 globalRot = rot.cpy();
 } else {
 rootWorldPos = parent.rootWorldPos;
 }
 this.localRot = rot.cpy();
 this.len = len;
 baseRadius = len * l2b * 0.5;
 }

 public Segment branch(float len, Quaternion rot) {
 Segment child = new Segment(this, len, rot);
 children.add(child);
 return child;
 }

 public boolean hasChildren() {
 return !children.isEmpty();
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment

http://www.lesporteslogiques.net/wiki/ 6 / 15

 public void draw() {
 // Draw head line
 stroke(0);
 Vector3 up = new Vector3(0, len*0.4, 0);
 globalRot.transform(up);
 if (parent != null)
 line(parent.head.x, parent.head.y, parent.head.z, head.x, head.y, head.z);
 else
 line(0.0, 0.0, 0.0, head.x, head.y, head.z);

 // Draw UP line
 stroke(255, 0, 0);
 line(head.x, head.y, head.z, head.x + up.x, head.y + up.y, head.z + up.z);

 noStroke();
 if (hasChildren())
 drawSegment();
 else
 drawTip();

 for (Segment child : children)
 child.draw();
 }

 private void drawSegment() {
 beginShape(QUAD_STRIP);
 for (int i=0; i<faces+1; i++) {
 if (parent == null) {
 Quaternion rot = new Quaternion();
 rot.setFromAxisRad(xAxis, i * TWO_PI / faces);
 rot.mulLeft(globalRot);
 rot.transform(tmpVec);
 tmpVec.set(len, baseRadius, 0.0);
 } else {
 tmpVec.set(parent.points[i%faces]);
 }
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 tmpVec.set(points[i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 }
 endShape();
 }

 private void drawTip() {
 // Draw a capped tip if this segment has no children
 beginShape(TRIANGLE_FAN);
 vertex(head.x, head.y, head.z);
 for (int i=0; i<faces+1; i++) {
 if (parent == null) {
 Quaternion rot = new Quaternion();
 rot.setFromAxisRad(xAxis, i * TWO_PI / faces);
 rot.mulLeft(globalRot);
 rot.transform(tmpVec);
 tmpVec.set(len, baseRadius, 0.0);
 } else {
 tmpVec.set(parent.points[i%faces]);
 }
 }
 endShape();
 }

 public void update() {
 Vector3 pos = rootWorldPos.cpy();
 globalRot.set(localRot);
 if (parent != null) {
 pos.add(parent.head);
 globalRot.mulLeft(parent.globalRot).nor();
 }
 head.set(len, 0.0, 0.0); // Going right by default
 globalRot.transform(head);
 head.add(pos);

 float angle = 0.0;
 Quaternion rot = new Quaternion();
 for (int i=0; i<faces; i++) {
 rot.setFromAxisRad(xAxis, angle);
 rot.mulLeft(globalRot);
 tmpVec.set(len, baseRadius, 0.0);
 rot.transform(tmpVec);
 points[i] = tmpVec.cpy().add(pos);
 angle += TWO_PI / faces;
 }

 for (Segment child : children)
 child.update();
 }
}

iteration2.pde

import queasycam.*;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+segment

http://www.lesporteslogiques.net/wiki/ 7 / 15

import com.badlogic.gdx.math.*;
import nervoussystem.obj.*;
import processing.pdf.*;

static final Vector3 xAxis = new Vector3(1.0, 0.0, 0.0);
static final Vector3 yAxis = new Vector3(0.0, 1.0, 0.0);
static final Vector3 zAxis = new Vector3(0.0, 0.0, 1.0);

QueasyCam cam;

boolean wireframe = false;
boolean record = false;

ArrayList<Drawable> objects = new ArrayList();

public void setup() {
 fullScreen(P3D);
 //size(800, 600, P3D);

 cam = new QueasyCam(this, 1, 9999);
 cam.key_forward = 'z';
 cam.key_left = 'q';
 cam.key_backward = 's';
 cam.key_right = 'd';
 cam.key_up = 'e';
 cam.key_down = 'a';

 Pipe pipe = new Pipe(
 new Vector3(0, 0, 0), new Quaternion().setEulerAngles(10, 0, 40),
 10, 32);
 objects.add(pipe);
 float size = 20;
 for (int i=0; i<8; i++) {
 pipe.changeSize(size);
 size += 10;
 pipe.addBend(90, 0.0, 45.0);
 }
}

public void draw() {
 background(255);
 lights();

 strokeWeight(1);
 stroke(255, 0, 0);
 line(0, 0, 0, 100, 0, 0);
 stroke(0, 255, 0);
 line(0, 0, 0, 0, 100, 0);
 stroke(0, 0, 255);
 line(0, 0, 0, 0, 0, 100);

 if (wireframe)
 stroke(0);
 else
 noStroke();
 strokeWeight(2);

 if (record) {
 beginRaw(PDF, "output.pdf");
 noFill();
 }

 for (Drawable o : objects)
 o.draw();

 if (record) {
 record = false;
 endRaw();
 }
}

void keyPressed() {
 if (key == 'w')
 wireframe = !wireframe;

 if (key == 'p')
 record = true;
}

public interface Drawable {
 public void draw();
 public void update();
}

public interface Chainable extends Drawable {
 public Vector3 getOutPos();
 public Quaternion getOutOrientation();
}

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

http://www.lesporteslogiques.net/wiki/ 8 / 15

/*****************************
** class Pipe **
*****************************/

public class Pipe implements Drawable {
 private Vector3 pos;
 private Quaternion orientation;
 private float radius;
 private float nextRadius;
 private int faces;
 private ArrayList<Chainable> objects = new ArrayList();
 private Vector3 currentPos;
 private Quaternion currentOrientation;

 public Pipe(Vector3 pos, Quaternion orientation, float radius, int faces) {
 this.pos = pos;
 this.orientation = orientation;
 this.radius = radius;
 this.nextRadius = radius;
 this.faces = faces;
 currentPos = this.pos.cpy();
 currentOrientation = orientation.cpy();
 }

 public void changeSize(float next) {
 this.nextRadius = next;
 }

 private void add(Chainable object) {
 objects.add(object);
 currentPos = object.getOutPos();
 currentOrientation = object.getOutOrientation();
 radius = nextRadius;
 }

 public void addTube(float len) {
 addTube(len, 0.0);
 }

 public void addTube(float len, float twist) {
 Tube tube = new Tube(
 currentPos, currentOrientation,
 len, radius, nextRadius, twist, 1, faces
);
 add(tube);
 }

 public void addBend(float angleBendDeg) {
 addBend(angleBendDeg, 0.0, 0.0);
 }

 public void addBend(float angleBendDeg, float angleRotDeg) {
 addBend(angleBendDeg, angleRotDeg, 0.0);
 }

 public void addBend(float angleBendDeg, float angleRotDeg, float twist) {
 int rings = 8;
 float radInt = 50;
 currentOrientation.mul(new Quaternion().setEulerAngles(0, angleRotDeg, 0));
 Bend bend = new Bend(
 currentPos, currentOrientation,
 radius, nextRadius,
 radians(angleBendDeg), radInt, twist,
 rings, faces
);
 add(bend);
 }

 public void update() {
 for (Chainable o : objects)
 o.update();
 }

 public void draw() {
 for (Chainable o : objects) {
 o.draw();
 }

 Vector3 head = currentOrientation.transform(new Vector3(32, 0, 0));
 head.add(currentPos);
 line(currentPos.x, currentPos.y, currentPos.z, head.x, head.y, head.z);
 }
}

/*****************************
** class Tube **
*****************************/

public class Tube implements Drawable, Chainable {
 private Vector3 pos;
 private Quaternion orientation;
 private float len;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

http://www.lesporteslogiques.net/wiki/ 9 / 15

 private float radiusIn;
 private float radiusOut;
 private float twist;
 private int rings;
 private int faces;
 private Vector3[] points;
 private Vector3 tmpVec = new Vector3();
 private Vector3 outPos = new Vector3();
 private Quaternion outOrientation = new Quaternion();

 public Tube(
 Vector3 pos,
 Quaternion orientation,
 float len,
 float radiusIn,
 float radiusOut,
 float twist, // In degrees
 int rings, int faces
) {
 this.pos = pos.cpy();
 this.orientation = orientation.cpy();
 this.len = len;
 this.radiusIn = radiusIn;
 this.radiusOut = radiusOut;
 this.twist = radians(twist);
 this.rings = rings;
 this.faces = faces;
 points = new Vector3[faces * (rings+1)];
 update();
 }

 Vector3 getOutPos() {
 return outPos.cpy();
 }

 Quaternion getOutOrientation() {
 return outOrientation.cpy();
 }

 public void update() {
 Quaternion rot = new Quaternion();
 int pointIdx = 0;
 for (int s=0; s<rings+1; s++) {
 float angle = s * twist/rings;
 for (int i=0; i<faces; i++) {
 tmpVec.set(s * len/rings, map(s, 0, rings, radiusIn, radiusOut), 0.0);
 rot.setFromAxisRad(xAxis, angle).mulLeft(orientation);
 rot.transform(tmpVec);
 points[pointIdx++] = tmpVec.cpy().add(pos);
 angle += TWO_PI / faces;
 }
 }
 outOrientation.set(orientation);
 outOrientation.mul(new Quaternion().setFromAxisRad(xAxis, twist));
 outPos.set(len, 0.0, 0.0);
 outOrientation.transform(outPos);
 outPos.add(pos);

 }

 public void draw() {
 for (int s=0; s<rings; s++) {
 beginShape(QUAD_STRIP);
 for (int i=0; i<faces+1; i++) {
 tmpVec.set(points[s * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 tmpVec.set(points[(s+1) * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 }
 endShape();
 }
 }
}

/*****************************
** class Bend **
*****************************/

public class Bend implements Drawable, Chainable {
 private Vector3 pos;
 private Quaternion orientation;
 private float radiusIn;
 private float radiusOut;
 private float bendAngle;
 private float radInt;
 private float twist;
 private int rings;
 private int faces;
 private Vector3[] points;
 private Vector3 tmpVec = new Vector3();
 private Vector3 outPos = new Vector3();
 private Quaternion outOrientation = new Quaternion();

http://www.lesporteslogiques.net/wiki/ 10 / 15

 public Bend(
 Vector3 pos,
 Quaternion orientation,
 float radiusIn,
 float radiusOut,
 float bendAngle, // In radians
 float radInt, // Internal radius
 float twist,
 int rings,
 int faces
) {
 this.pos = pos.cpy();
 this.orientation = orientation.cpy();
 this.radiusIn = radiusIn;
 this.radiusOut = radiusOut;
 this.bendAngle = bendAngle;
 this.radInt = radInt;
 this.twist = radians(twist);
 this.rings = rings;
 this.faces = faces;
 points = new Vector3[faces * (rings+1)];
 update();
 }

 Vector3 getOutPos() {
 return outPos.cpy();
 }

 Quaternion getOutOrientation() {
 return outOrientation.cpy();
 }

 public void update() {
 int pointIdx = 0;
 Quaternion segRot = new Quaternion();
 Quaternion rot = new Quaternion();
 Vector3 bendOffset = new Vector3(0.0, radInt + radiusIn, 0.0);
 orientation.transform(bendOffset);
 float angleSeg = 0.0;
 for (int s=0; s<rings+1; s++) {
 segRot.setFromAxisRad(zAxis, angleSeg);
 segRot.mulLeft(orientation);
 float tubeRadius = map(s, 0, rings, radiusIn, radiusOut);
 Vector3 segOffset = new Vector3(0.0, radInt + tubeRadius, 0.0);
 segRot.transform(segOffset);
 angleSeg += bendAngle / rings;
 float angle = s * twist/rings;
 for (int i=0; i<faces; i++) {
 tmpVec.set(0.0, tubeRadius, 0.0);
 rot.setFromAxisRad(xAxis, angle);
 rot.mulLeft(segRot);
 rot.transform(tmpVec);
 points[pointIdx++] = tmpVec.cpy().sub(segOffset).add(bendOffset).add(pos);
 angle += TWO_PI / faces;
 }
 }

 outPos.set(0, -radiusOut - radInt, 0);
 outOrientation.set(orientation);
 outOrientation.mul(new Quaternion().setFromAxisRad(zAxis, bendAngle));
 outOrientation.transform(outPos);
 outOrientation.mul(new Quaternion().setFromAxisRad(xAxis, twist));
 tmpVec.set(0.0, radInt + radiusIn, 0.0);
 orientation.transform(tmpVec);
 outPos.add(tmpVec).add(pos);
 }

 public void draw() {
 for (Vector3 p : points) {
 point(p.x, p.y, p.z);
 }

 for (int s=0; s<rings; s++) {
 beginShape(QUAD_STRIP);
 for (int i=0; i<faces+1; i++) {
 tmpVec.set(points[s * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 tmpVec.set(points[(s+1) * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 }
 endShape();
 }
 }
}

scene.pde

import queasycam.*;
import com.badlogic.gdx.math.*;

http://www.lesporteslogiques.net/wiki/ 11 / 15

static final Vector3 xAxis = new Vector3(1.0, 0.0, 0.0);
static final Vector3 yAxis = new Vector3(0.0, 1.0, 0.0);
static final Vector3 zAxis = new Vector3(0.0, 0.0, 1.0);

QueasyCam cam;

boolean wireframe = false;

ArrayList<Drawable> objects = new ArrayList();

public void setup() {
 fullScreen(P3D);

 cam = new QueasyCam(this, PConstants.PI/2.5f, 0.01, 9999);
 cam.key_forward = 'z';
 cam.key_left = 'q';
 cam.key_backward = 's';
 cam.key_right = 'd';
 cam.key_up = 'e';
 cam.key_down = 'a';

 // Center tower
 Pipe pipe = new Pipe(
 new Vector3(0.0, 800, 0.0),
 new Quaternion().setFromAxis(zAxis, -90),
 550, 64);
 pipe.addTube(1000);
 pipe.changeSize(800);
 pipe.addTube(1000);
 pipe.changeSize(820);
 pipe.addTube(20);
 pipe.changeSize(2600);
 pipe.addTube(200);
 pipe.addTube(-400);
 objects.add(pipe);

 // Surrounding circus
 pipe = new Pipe(
 new Vector3(0.0, 800, 0.0),
 new Quaternion().setFromAxis(zAxis, -90),
 800, 64);
 pipe.addTube(600);
 pipe.changeSize(2000);
 pipe.addTube(200);
 pipe.changeSize(2040);
 pipe.addTube(40);
 pipe.addTube(1000);
 objects.add(pipe);

 for (int r=0; r<4; r++) {
 Quaternion rot = new Quaternion().setEulerAngles(r * 90, 0, 9);
 for (int i=0; i<6; i++) {
 Vector3 pos = new Vector3(-2100, 298, (i-3)*34 + 17);
 rot.transform(pos);
 pipe = new Pipe(pos, rot, 16, 16);
 pipe.addTube(1480 + 4 * abs(i-3));
 pipe.addBend(99, 180);
 pipe.addTube(300, (3-i) * 5);
 pipe.addBend(14);
 if (abs(i-2.5)<=1) {
 pipe.addTube(860);
 pipe.changeSize(24);
 pipe.addTube(18);
 pipe.changeSize(26);
 pipe.addTube(200);
 } else {
 pipe.addTube(1000);
 pipe.addBend(70);
 float l=0.0, ll=0.0;
 int state = 0; // -1: left; 0: center; 1: right
 while (l<1800) {
 int turn = floor(random(3.0)-1.0);
 if (state==0 && turn == -1) {
 pipe.addBend(45, 90);
 state = -1;
 } else if (state==0 && turn == 1) {
 pipe.addBend(45, -90);
 state = 1;
 } else if (state == -1 && turn == 1) {
 pipe.addBend(45, 180, -90);
 state = 0;
 } else if (state == 1 && turn == -1) {
 pipe.addBend(45, -180, 90);
 state = 0;
 } else if (state == 0) {
 pipe.addTube(ll);
 l += ll;
 ll = 0.0;
 }
 ll += 100;
 }
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

http://www.lesporteslogiques.net/wiki/ 12 / 15

 objects.add(pipe);
 }
 float deg = r * 90 + 45;
 rot.setFromAxis(zAxis, -90);
 rot.mul(new Quaternion().setFromAxis(xAxis, deg));
 Vector3 pos = new Vector3(590 * cos(radians(deg)), 800, 590 * sin(radians(deg)));
 pipe = new Pipe(pos, rot, 34, 16);
 pipe.addTube(980);
 pipe.addBend(14);
 pipe.addTube(950);
 pipe.addBend(70);
 pipe.addTube(1800);
 objects.add(pipe);

 deg = r * 90 + 45;
 rot.setFromAxis(zAxis, -90);
 rot.mul(new Quaternion().setFromAxis(xAxis, deg));
 pos = new Vector3(1700 * cos(radians(deg)), 50, 1700 * sin(radians(deg)));
 pipe = new Pipe(pos, rot, 140, 32);
 pipe.addBend(90, 0, 0, 300);
 objects.add(pipe);
 }
}

public void draw() {
 background(0);
 //lights();
 //ambientLight(12, 4, 1);
 //pointLight(100, 100, 110, 140, -2000, 144);
 directionalLight(204, 204, 204, .5, 0.6, 0.2);
 emissive(50, 46, 51);
 //specular(204, 102, 0);
 shininess(1.0);

 strokeWeight(1);
 stroke(255, 0, 0);
 line(0, 0, 0, 100, 0, 0);
 stroke(0, 255, 0);
 line(0, 0, 0, 0, 100, 0);
 stroke(0, 0, 255);
 line(0, 0, 0, 0, 0, 100);

 if (wireframe)
 stroke(0);
 else
 noStroke();
 strokeWeight(1);

 for (Drawable o : objects)
 o.draw();
}

void keyPressed() {
 if (key == 'w')
 wireframe = !wireframe;
}

public interface Drawable {
 public void draw();
 public void update();
}

public interface Chainable extends Drawable {
 public Vector3 getOutPos();
 public Quaternion getOutOrientation();
}

/*****************************
** class Pipe **
*****************************/

public class Pipe implements Drawable {
 private Vector3 pos;
 private Quaternion orientation;
 private float radius;
 private float nextRadius;
 private int faces;
 private ArrayList<Chainable> objects = new ArrayList();
 private Vector3 currentPos;
 private Quaternion currentOrientation;

 public Pipe(Vector3 pos, Quaternion orientation, float radius, int faces) {
 this.pos = pos;
 this.orientation = orientation;
 this.radius = radius;
 this.nextRadius = radius;
 this.faces = faces;
 currentPos = this.pos.cpy();
 currentOrientation = orientation.cpy();
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

http://www.lesporteslogiques.net/wiki/ 13 / 15

 public void changeSize(float next) {
 this.nextRadius = next;
 }

 private void add(Chainable object) {
 objects.add(object);
 currentPos = object.getOutPos();
 currentOrientation = object.getOutOrientation();
 radius = nextRadius;
 }

 public void addTube(float len) {
 addTube(len, 0.0);
 }

 public void addTube(float len, float twist) {
 Tube tube = new Tube(
 currentPos, currentOrientation,
 len, radius, nextRadius, twist, 1, faces
);
 add(tube);
 }

 public void addBend(float angleBendDeg) {
 addBend(angleBendDeg, 0.0, 0.0);
 }

 public void addBend(float angleBendDeg, float angleRotDeg) {
 addBend(angleBendDeg, angleRotDeg, 0.0);
 }

 public void addBend(float angleBendDeg, float angleRotDeg, float twist) {
 float radInt = 50;
 addBend(angleBendDeg, angleRotDeg, twist, radInt);
 }

 public void addBend(float angleBendDeg, float angleRotDeg, float twist, float radInt) {
 int rings = ceil(angleBendDeg * 64.0 / 360.0);
 currentOrientation.mul(new Quaternion().setEulerAngles(0, angleRotDeg, 0));
 Bend bend = new Bend(
 currentPos, currentOrientation,
 radius, nextRadius,
 radians(angleBendDeg), radInt, twist,
 rings, faces
);
 add(bend);
 }

 public void update() {
 for (Chainable o : objects)
 o.update();
 }

 public void draw() {
 for (Chainable o : objects) {
 o.draw();
 }

 Vector3 head = currentOrientation.transform(new Vector3(32, 0, 0));
 head.add(currentPos);
 line(currentPos.x, currentPos.y, currentPos.z, head.x, head.y, head.z);
 }
}

/*****************************
** class Tube **
*****************************/

public class Tube implements Drawable, Chainable {
 private Vector3 pos;
 private Quaternion orientation;
 private float len;
 private float radiusIn;
 private float radiusOut;
 private float twist;
 private int rings;
 private int faces;
 private Vector3[] points;
 private Vector3 tmpVec = new Vector3();
 private Vector3 outPos = new Vector3();
 private Quaternion outOrientation = new Quaternion();

 public Tube(
 Vector3 pos,
 Quaternion orientation,
 float len,
 float radiusIn,
 float radiusOut,
 float twist, // In degrees
 int rings, int faces
) {
 this.pos = pos.cpy();

http://www.lesporteslogiques.net/wiki/ 14 / 15

 this.orientation = orientation.cpy();
 this.len = len;
 this.radiusIn = radiusIn;
 this.radiusOut = radiusOut;
 this.twist = radians(twist);
 this.rings = rings;
 this.faces = faces;
 points = new Vector3[faces * (rings+1)];
 update();
 }

 Vector3 getOutPos() {
 return outPos.cpy();
 }

 Quaternion getOutOrientation() {
 return outOrientation.cpy();
 }

 public void update() {
 Quaternion rot = new Quaternion();
 int pointIdx = 0;
 for (int s=0; s<rings+1; s++) {
 float angle = s * twist/rings;
 for (int i=0; i<faces; i++) {
 tmpVec.set(s * len/rings, map(s, 0, rings, radiusIn, radiusOut), 0.0);
 rot.setFromAxisRad(xAxis, angle).mulLeft(orientation);
 rot.transform(tmpVec);
 points[pointIdx++] = tmpVec.cpy().add(pos);
 angle += TWO_PI / faces;
 }
 }
 outOrientation.set(orientation);
 outOrientation.mul(new Quaternion().setFromAxisRad(xAxis, twist));
 outPos.set(len, 0.0, 0.0);
 outOrientation.transform(outPos);
 outPos.add(pos);

 }

 public void draw() {
 for (int s=0; s<rings; s++) {
 beginShape(QUAD_STRIP);
 for (int i=0; i<faces+1; i++) {
 tmpVec.set(points[s * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 tmpVec.set(points[(s+1) * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 }
 endShape();
 }
 }
}

/*****************************
** class Bend **
*****************************/

public class Bend implements Drawable, Chainable {
 private Vector3 pos;
 private Quaternion orientation;
 private float radiusIn;
 private float radiusOut;
 private float bendAngle;
 private float radInt;
 private float twist;
 private int rings;
 private int faces;
 private Vector3[] points;
 private Vector3 tmpVec = new Vector3();
 private Vector3 outPos = new Vector3();
 private Quaternion outOrientation = new Quaternion();

 public Bend(
 Vector3 pos,
 Quaternion orientation,
 float radiusIn,
 float radiusOut,
 float bendAngle, // In radians
 float radInt, // Internal radius
 float twist,
 int rings,
 int faces
) {
 this.pos = pos.cpy();
 this.orientation = orientation.cpy();
 this.radiusIn = radiusIn;
 this.radiusOut = radiusOut;
 this.bendAngle = bendAngle;
 this.radInt = radInt;
 this.twist = radians(twist);
 this.rings = rings;
 this.faces = faces;

http://www.lesporteslogiques.net/wiki/ 15 / 15

 points = new Vector3[faces * (rings+1)];
 update();
 }

 Vector3 getOutPos() {
 return outPos.cpy();
 }

 Quaternion getOutOrientation() {
 return outOrientation.cpy();
 }

 public void update() {
 int pointIdx = 0;
 Quaternion segRot = new Quaternion();
 Quaternion rot = new Quaternion();
 Vector3 bendOffset = new Vector3(0.0, radInt + radiusIn, 0.0);
 orientation.transform(bendOffset);
 float angleSeg = 0.0;
 for (int s=0; s<rings+1; s++) {
 segRot.setFromAxisRad(zAxis, angleSeg);
 segRot.mulLeft(orientation);
 float tubeRadius = map(s, 0, rings, radiusIn, radiusOut);
 Vector3 segOffset = new Vector3(0.0, radInt + tubeRadius, 0.0);
 segRot.transform(segOffset);
 angleSeg += bendAngle / rings;
 float angle = s * twist/rings;
 for (int i=0; i<faces; i++) {
 tmpVec.set(0.0, tubeRadius, 0.0);
 rot.setFromAxisRad(xAxis, angle);
 rot.mulLeft(segRot);
 rot.transform(tmpVec);
 points[pointIdx++] = tmpVec.cpy().sub(segOffset).add(bendOffset).add(pos);
 angle += TWO_PI / faces;
 }
 }

 outPos.set(0, -radiusOut - radInt, 0);
 outOrientation.set(orientation);
 outOrientation.mul(new Quaternion().setFromAxisRad(zAxis, bendAngle));
 outOrientation.transform(outPos);
 outOrientation.mul(new Quaternion().setFromAxisRad(xAxis, twist));
 tmpVec.set(0.0, radInt + radiusIn, 0.0);
 orientation.transform(tmpVec);
 outPos.add(tmpVec).add(pos);
 }

 public void draw() {
 for (Vector3 p : points) {
 point(p.x, p.y, p.z);
 }

 for (int s=0; s<rings; s++) {
 beginShape(QUAD_STRIP);
 for (int i=0; i<faces+1; i++) {
 tmpVec.set(points[s * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 tmpVec.set(points[(s+1) * faces + i%faces]);
 vertex(tmpVec.x, tmpVec.y, tmpVec.z);
 }
 endShape();
 }
 }
}

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/recherche/residence_infra/start?rev=1732294971
Article mis à jour: 2024/11/22 18:02

http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/recherche/residence_infra/start?rev=1732294971

	INFRA
	Infra-Documentation (ExSitu)
	Laurent
	Infrabuble
	Multitude
	Dessins génératifs

	Infra PickUp
	la base infrastructurelle
	le bobinage
	assemblage
	trempage
	essai infrabassique avec retour d'informations

	Infra graphique
	Quaternion

