
WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762873037
Article mis à jour le : 2025/11/11 15:57 / Imprimé le 2026/02/12 22:07

http://www.lesporteslogiques.net/wiki/ 1 / 8

mesh 2 svg 2 paper
Meshlab : https://www.meshlab.net/ Rien tiré de meshlab pour transformer un mesh (stl, obj) en svg

Premier essai concluant avec https://www.svgai.org/convert/stl-to-svg, le fichier s'ouvre bien avec inkscape, l'épaisseur des
traits est bien trop élevée mais ça s'arrange facilement. Aucune face n'est cachée

Conseil de Laurent : utiliser «ln» de Michael Fogleman : https://github.com/fogleman/ln C'est programmé en Go,
jamais utilisé

Pour la suite j'utilise l'objet teapot.obj extrait du newell_teaset.zip

Conversion de formats 3D en ligne de commande
Avec OpenCTM (https://sourceforge.net/projects/openctm/)

sudo apt install openctm-tools

Ensuite on peut utiliser ctmconv qui permet de convertir les formats suivants :

OpenCTM (.ctm),
Stanford triangle format (.ply),
Stereolitography (.stl),
3D Studio (.3ds),
COLLADA 1.4/1.5 (.dae),
Wavefront geometry file (.obj),
LightWave object (.lwo),
Geomview object file format (.off),
VRML 2.0 - export only (.wrl).

Exemple :

ctmconv parasect.obj parasect.stl

Infos sur un objet 3D en ligne de commande
Nombre de points, de faces, etc.

Avec assimp-utils

sudo apt install assimp-utils
assimp info teapot.obj

Assimp pour Open Asset Import Library

https://github.com/assimp/assimp
https://the-asset-importer-lib-documentation.readthedocs.io/en/latest/

https://www.meshlab.net/
https://www.svgai.org/convert/stl-to-svg
https://github.com/fogleman/ln
https://www.cs.utah.edu/~natevm/newell_teaset/newell_teaset.zip
http://www.lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot.obj.png
https://sourceforge.net/projects/openctm/
https://github.com/assimp/assimp
https://the-asset-importer-lib-documentation.readthedocs.io/en/latest/
http://www.lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762873037

http://www.lesporteslogiques.net/wiki/ 2 / 8

Affichage d'objets STL
Avec GMSH : https://gmsh.info/ qui est aussi capable d'une multitude d'autres choses (en GUI ou CLI)

Installation de Go
************************************** # installation du langage Go sur Debian 12 @ tenko
sudo apt update
sudo apt install golang
go version # go version go1.19.8 linux/amd64
go env GOPATH # ok : /home/emoc/go

Helloworld en Go

Créer un fichier vide helloworld.go

nano helloworld.go

Le fichier helloworld.go contient

package main

import "fmt"

func main() {
 fmt.Println("HelloWorld, Golang!")
}

Puis

go run hello.go

Comment compiler ce programme pour qu'il puisse être utilisé comme une commande ?

Il faut le transformer en module

go mod init example/helloworld # donner un nom et chemin au module
go mod tidy # récupérer les dépendances
go build -o helloworld # créer le binaire «helloworld»
mv ./helloworld ../bin/helloworld

Maintenant on peut déclencher la commande avec

~/go/bin/helloworld

Utilisation de Simplify
Simplify est un logiciel en ligne de commande de Michael Fogleman qui permet de réduire le nombre de faces d'un objet 3D
au format .STL. Simplify est programmé en Go

https://github.com/fogleman/simplify

installer Go (voir ci-dessus)
mkdir ~/go/bin
go install github.com/fogleman/simplify/cmd/simplify@latest
réduction à 10% des faces de l'objet (652 faces -> 64 faces)
~/go/bin/simplify -f 0.1 parasect.stl parasect-0.1.stl

Comparaison (objet original : parasect)

https://gmsh.info/
http://www.lesporteslogiques.net/wiki/_media/recherche/residence_polygones/gmsh.png
https://github.com/fogleman/simplify
https://models.spriters-resource.com/nintendo_64/pokemonstadium2/asset/287712/

http://www.lesporteslogiques.net/wiki/ 3 / 8

Utilisation de ln
Pour transformer un objet 3D au format .OBJ en fichier .SVG

git clone https://github.com/fogleman/ln.git
cd ln
go mod init ln/ln
go mod tidy

placer le fichier teapot.obj dans le dossier et créer le fichier teapot.go :

package main

import "github.com/fogleman/ln/ln"

func main() {
 scene := ln.Scene{}
 mesh, err := ln.LoadOBJ("teapot.obj")
 if err != nil {
 panic(err)
 }
 mesh.UnitCube()
 scene.Add(ln.NewTransformedShape(mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
 // scene.Add(mesh)
 eye := ln.Vector{-0.5, 0.5, 2}
 center := ln.Vector{}
 up := ln.Vector{0, 1, 0}
 width := 1024.0
 height := 1024.0
 paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
 paths.WriteToPNG("teapot.png", width, height)
 paths.WriteToSVG("teapot.svg", width, height)
}

Puis

go run teapot.go

Ça marche! Le fichier svg est créé, en fonction du point de vue défini dans le script go, les faces qui doivent l'être sont
cachées.

Transformer en exécutable.

La commande est lancée depuis le répertoire courant dans lequel se trouve le fichier teapot.obj, les fichiers résultants
(teapot.png et teapot.svg) sont créés dans le répertoire courant.

go build -o teapot # construire le binaire
mv teapot ../bin/teapot # déplacer dans le dossier ~/go/bin
~/go/bin/teapot # lancer la commande depuis le répertoire courant

On obtient

Extrait du fichier svg

<svg width="1024.000000" height="1024.000000" version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">
<g transform="translate(0,1024.000000) scale(1,-1)">
<polyline stroke="black" fill="none" points="628.113702,626.372774 630.057369,626.470582" />
<polyline stroke="black" fill="none" points="630.057369,626.470582 612.007059,629.402582" />

http://www.lesporteslogiques.net/wiki/_media/recherche/residence_polygones/parasect_comparaison_reduction_de_faces.png
http://www.lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_dans_inkscape.png

http://www.lesporteslogiques.net/wiki/ 4 / 8

<polyline stroke="black" fill="none" points="646.867425,619.146177 645.594080,623.083557" />
<polyline stroke="black" fill="none" points="645.594080,623.083557 641.262088,622.941587" />
<polyline stroke="black" fill="none" points="639.714178,622.890858 645.594080,623.083557" />
<polyline stroke="black" fill="none" points="645.594080,623.083557 630.057369,626.470582" />
<polyline stroke="black" fill="none" points="646.867425,619.146177 659.738739,615.250381" />
<polyline stroke="black" fill="none" points="659.738739,615.250381 658.331336,619.276179" />
... etc.

En manipulant, on dirait bien que les tracés sont doublés

obj2svg
Je cherche à créer une commande qui soit accessible de n'importe où qui permette de transformer un objet 3D au format
.OBJ en image png et fichier SVG du maillage

Créer le dossier et le fichier

mkdir test_obj2svg
cd test_obj2svg
touch obj2svg.go # puis l'éditer

obj2svg.go (cliquer pour afficher le code)

obj2svg.go

<code go>
package main

import (
 "fmt"
 "flag"

 "github.com/fogleman/ln/ln"
)

func main() {

 // Parsing des arguments

 flag.Parse()
 args := flag.Args()
 if len(args) != 1 {
 fmt.Println("Usage: obj2svg input.obj -> créera 2 fichiers input.obj.png et input.obj.svg")
 return
 }

 pngfilename := args[0] + ".png"
 svgfilename := args[0] + ".svg"

 fmt.Printf("pngfilename %s\n", pngfilename)
 fmt.Printf("svgfilename %s\n", svgfilename)

 scene := ln.Scene{}
 fmt.Printf("Loading %s\n", args[0])
 mesh, err := ln.LoadOBJ(args[0])
 if err != nil {
 panic(err)
 }
 mesh.UnitCube()
 scene.Add(ln.NewTransformedShape(mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
 // scene.Add(mesh)
 eye := ln.Vector{-0.5, 0.5, 2}
 center := ln.Vector{}
 up := ln.Vector{0, 1, 0}
 width := 1024.0
 height := 1024.0
 paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
 paths.WriteToPNG(pngfilename, width, height)
 paths.WriteToSVG(svgfilename, width, height)
}

Puis

go mod init example/obj2svg # initialiser le module
go mod tidy # charger les dépendances
go run obj2svg.go teapot.obj # ok, tout fonctionne
go build -o obj2svg # construire l'exécutable
mv obj2svg ../bin/obj2svg # le placer dans le bon dossier
Maintenant on peut exécuter la commande suivante dans n'importe quel dossier
~/go/bin/obj2svg teapot.obj

http://www.lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=3

http://www.lesporteslogiques.net/wiki/ 5 / 8

TODO : permettre la rotation de la vue

rendu wireframe avec blender CLI + gif

Script python blender à utiliser en ligne de commande avec

blender --background --python blender_teapot_wireframe_views.py

blender_teapot_wireframe_views.py (cliquer pour afficher le code)

blender_teapot_wireframe_views.py

Blender 3.4.1
Debian 12 @ tenko
20251109, résidence polygones @ Fablab des portes logiques

import bpy
import math

Rendu wireframe "propre" 600x600

Supprimer tous les objets existants
bpy.ops.wm.read_factory_settings(use_empty=True)

Importer le STL
bpy.ops.import_mesh.stl(filepath="teapot.stl")
obj = bpy.context.selected_objects[0]

Supprimer tous les matériaux existants
obj.data.materials.clear()

Ajouter un modifier wireframe
mod = obj.modifiers.new(name="WireframeMod", type='WIREFRAME')
mod.thickness = 0.02 # épaisseur des lignes

Créer un matériau noir shadeless pour le wireframe
mat = bpy.data.materials.new(name="WireMat")
mat.diffuse_color = (0, 0, 0, 1)
mat.use_nodes = True
bsdf = mat.node_tree.nodes.get("Principled BSDF")
bsdf.inputs['Base Color'].default_value = (0, 0, 0, 1)
bsdf.inputs['Specular'].default_value = 0
bsdf.inputs['Roughness'].default_value = 1
obj.data.materials.append(mat)

Ajouter une caméra
cam_data = bpy.data.cameras.new(name="Camera")
cam_object = bpy.data.objects.new("Camera", cam_data)
bpy.context.collection.objects.link(cam_object)
bpy.context.scene.camera = cam_object

Paramètres de rendu
scene = bpy.context.scene
scene.render.image_settings.file_format = 'PNG'
scene.render.resolution_x = 600
scene.render.resolution_y = 600
scene.render.film_transparent = False # fond blanc
scene.render.film_transparent_glass = False

Désactiver l’anti-aliasing
scene.render.use_antialiasing = False
scene.render.engine = 'BLENDER_EEVEE' # moteur Eevee plus simple
Eevee anti-aliasing quasi désactivé

http://www.lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_wire.gif
http://www.lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=4

http://www.lesporteslogiques.net/wiki/ 6 / 8

scene.eevee.taa_render_samples = 1

Récupérer la scène
scene = bpy.context.scene

Créer un monde si nécessaire
if scene.world is None:
 world = bpy.data.worlds.new("World")
 scene.world = world

Couleur de fond blanc
scene.world.use_nodes = True
bg = scene.world.node_tree.nodes['Background']
bg.inputs['Color'].default_value = (1, 1, 1, 1) # blanc

Centrer la caméra autour de l'objet
center = obj.location

Paramètres rotation
n_views = 30
radius = 10 # distance caméra
elevation = 5

for i in range(n_views):
 angle = 2 * math.pi * i / n_views
 cam_object.location.x = center.x + radius * math.cos(angle)
 cam_object.location.y = center.y + radius * math.sin(angle)
 cam_object.location.z = center.z + elevation

 # Orienter la caméra vers le centre
 direction = center - cam_object.location
 rot_quat = direction.to_track_quat('-Z', 'Y')
 cam_object.rotation_euler = rot_quat.to_euler()

 # Nom du fichier
 scene.render.filepath = f"teapot_wire_{i:02d}.png"

 # Rendu
 bpy.ops.render.render(write_still=True)

Ensuite on peut assembler les images avec

convert teapot_wire_*.png -threshold 50% -colors 2 -resize 600x600 teapot_wire.gif

Version alternative qui affiche également les faces (et masque les faces cachées)

blender --background --python blender_teapot_facewire.py # calculer les rendus d'image
convert teapot_facewire_*.png -threshold 50% -colors 2 -resize 300x300 teapot_facewire.gif # préparer l'animation

blender_teapot_facewire.py (cliquer pour afficher le code)

blender_teapot_facewire.py

Blender 3.4.1
Debian 12 @ tenko
20251109, résidence polygones @ Fablab des portes logiques

En ligne 65 on peut choisir : fond transparent ou fond monochrome (changement de couleur en ligne 77)

import bpy
import math

Configuration de la scène

http://www.lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_facewire.gif
http://www.lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=5

http://www.lesporteslogiques.net/wiki/ 7 / 8

Supprimer tous les objets existants
bpy.ops.wm.read_factory_settings(use_empty=True)

Importer le STL
bpy.ops.import_mesh.stl(filepath="teapot.stl")
obj = bpy.context.selected_objects[0]

Supprimer tous les matériaux existants
obj.data.materials.clear()

Matériau blanc pour les faces

mat = bpy.data.materials.new("FaceWhite")
mat.use_nodes = True
bsdf = mat.node_tree.nodes["Principled BSDF"]
bsdf.inputs['Base Color'].default_value = (1, 1, 1, 1) # blanc
bsdf.inputs['Specular'].default_value = 0
obj.data.materials.append(mat)

Matériau Wireframe noir

Ajouter un modifier wireframe
mod = obj.modifiers.new(name="WireframeMod", type='WIREFRAME')
mod.thickness = 0.02
mod.use_replace = False # conserve faces originales

Création d’un second matériau pour le wireframe
wire_mat = bpy.data.materials.new("WireBlack")
wire_mat.use_nodes = True
nodes = wire_mat.node_tree.nodes
bsdf_wire = nodes.get("Principled BSDF")
bsdf_wire.inputs['Base Color'].default_value = (0, 0, 0, 1) # noir
bsdf_wire.inputs['Specular'].default_value = 0
obj.data.materials.append(wire_mat)

Associer le modifier wireframe au matériau noir
mod.material_offset = 1 # utilise le second matériau

Caméra

cam_data = bpy.data.cameras.new(name="Camera")
cam_object = bpy.data.objects.new("Camera", cam_data)
bpy.context.collection.objects.link(cam_object)
bpy.context.scene.camera = cam_object

Paramètres de rendu
scene = bpy.context.scene
scene.render.image_settings.file_format = 'PNG'
scene.render.resolution_x = 600
scene.render.resolution_y = 600
scene.render.film_transparent = True # False : fond blanc, True : fond transparent
scene.render.engine = 'BLENDER_EEVEE'
scene.eevee.taa_render_samples = 1 # anti-aliasing minimal

Fond blanc
if scene.world is None:
 world = bpy.data.worlds.new("World")
 scene.world = world
scene.world.use_nodes = True
bg = scene.world.node_tree.nodes['Background']
bg.inputs['Color'].default_value = (1, 1, 1, 1) # blanc

Paramètres rotation

center = obj.location
n_views = 30
radius = 10
elevation = 5

Générer les images

for i in range(n_views):
 angle = 2 * math.pi * i / n_views
 cam_object.location.x = center.x + radius * math.cos(angle)
 cam_object.location.y = center.y + radius * math.sin(angle)
 cam_object.location.z = center.z + elevation

 # Orienter la caméra vers le centre de l'objet
 direction = center - cam_object.location
 rot_quat = direction.to_track_quat('-Z', 'Y')
 cam_object.rotation_euler = rot_quat.to_euler()

 # Nom du fichier
 scene.render.filepath = f"teapot_facewire_{i:02d}.png"

 # Rendu

http://www.lesporteslogiques.net/wiki/ 8 / 8

 bpy.ops.render.render(write_still=True)

Blender Export Paper Model
Un add-on pour Blender permet de «déplier» un objet 3D : Export Paper Model

Utiliser vpype
Sur Linux Debian 12, en suivant les indications de https://vpype.readthedocs.io/en/latest/install.html#linux

sudo apt-get install pipx
pipx ensurepath
pipx install "vpype[all]"
vpype --version # vpype 1.15.0
vpype random show # ooooooooooooooooooh !

J'ajoute deduplicate un plugin vpype pour enlever les lignes en doublon dans un fichier svg
https://github.com/LoicGoulefert/deduplicate

Autres trucs intéressants à essayer
removeduplicatelines : une extension inkscape qui enlève les segments dupliqués :
https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/

occult plugin vpype pour masquer les faces cachées d'un fichier svg https://github.com/LoicGoulefert/occult

vpype «vpype is an extensible CLI pipeline utility which aims to be the Swiss Army knife for creating, modifying and/or
optimizing plotter-ready vector graphics» https://vpype.readthedocs.io/en/latest/install.html#linux

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse :
http://www.lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762873037
Article mis à jour: 2025/11/11 15:57

http://www.lesporteslogiques.net/wiki/recherche/residence_polygones/blender_export_paper_model
https://vpype.readthedocs.io/en/latest/install.html#linux
https://github.com/LoicGoulefert/deduplicate
https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/
https://github.com/LoicGoulefert/occult
https://vpype.readthedocs.io/en/latest/install.html#linux
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762873037

	mesh 2 svg 2 paper
	Conversion de formats 3D en ligne de commande
	Infos sur un objet 3D en ligne de commande
	Affichage d'objets STL
	Installation de Go
	Helloworld en Go

	Utilisation de Simplify
	Utilisation de ln
	obj2svg
	rendu wireframe avec blender CLI + gif
	Blender Export Paper Model
	Utiliser vpype
	Autres trucs intéressants à essayer

