
WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/ressource/code/cartographie/start?rev=1622643485
Article mis à jour le : 2021/06/02 16:18 / Imprimé le 2026/02/20 05:47

http://www.lesporteslogiques.net/wiki/ 1 / 5

python, cartographie, carte, code, em

Rédaction démarrée le 31 mai 2021

Cartographie en python
Quelques notes pour réaliser des cartes statiques en téléchargeant des «tuiles» d'OpenStreetMap sur lesquelles sont
ajoutées des données saisies avec umap.
Avec pour but de les imprimer.

nb : soyez indulgent, je débute en python

Deux pistes

Static Map : https://github.com/komoot/staticmap
py-staticmaps : https://github.com/flopp/py-staticmaps

Tests
Static Map

Installation de Static Map

pip3 install staticmap
pip3 show staticmap # permet de savoir quelle version est installée

Premier script

test avec https://github.com/komoot/staticmap
Python 3.5.3 / pip 9.0.1 / staticmap 0.5.5
Debian 9.5 @ kirin / 20210531

from staticmap import StaticMap, Line

m = StaticMap(3000, 4000, 10)
m.add_line(Line(((13.4, 52.5), (2.3, 48.9)), 'blue', 3))
image = m.render()
image.save('map.png')

Et ça produit bien une carte en haute définition, c'est encourageant!

On peut choisir le fournisseur de «tuiles» à la création de la carte (ex. en noir et blanc)

m = StaticMap(3000, 4000, 10, url_template='http://a.tile.stamen.com/toner/{z}/{x}/{y}.png')

J'en ai trouvé une liste ici : https://wiki.openstreetmap.org/wiki/Tile_servers

py-staticmaps

Je tente l'installation avec

pip3 install py-staticmaps

Mais ça bloque sur une erreur, et quand j'essaie de la résoudre, c'est la réaction en chaîne de messages d'erreur que je ne
comprends qu'à moitié (la moitié vide). Alors, on verra plus tard…

Réalisation
Étape 1 : le fond de carte

Un fond de carte de Quimper, en noir et blanc, en A4 paysage 300 dpi (avec une petite marge de 5 mm sur chaque bord)

http://www.lesporteslogiques.net/wiki/tag/python?do=showtag&tag=python
http://www.lesporteslogiques.net/wiki/tag/cartographie?do=showtag&tag=cartographie
http://www.lesporteslogiques.net/wiki/tag/carte?do=showtag&tag=carte
http://www.lesporteslogiques.net/wiki/tag/code?do=showtag&tag=code
http://www.lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
https://www.openstreetmap.org/
https://umap.openstreetmap.fr/fr/
https://github.com/komoot/staticmap
https://github.com/flopp/py-staticmaps
https://wiki.openstreetmap.org/wiki/Tile_servers
http://www.lesporteslogiques.net/wiki/ressource/code/cartographie/start?rev=1622643485

http://www.lesporteslogiques.net/wiki/ 2 / 5

définition x : (29.7 - 1.0) / 2.54 * 300 = 3390 pixels
définition y : (21 - 1.0) / 2.54 * 300 = 2362 pixels

Pour trouver le niveau de zoom et centrer la carte sur un point, on peut utiliser openstreetmap . Dans l'URL, on peut y lire les
coordonnées lat/lon et le niveau de zoom, exemple : https://www.openstreetmap.org/#map=13/47.9968/-4.1043

zoom : 13
lat. : 47.9968
lon. : -4.1043

Au sujet des niveaux de zoom : https://wiki.openstreetmap.org/wiki/Zoom_levels

Pour le fond de carte :

test avec https://github.com/komoot/staticmap
Python 3.5.3 / pip 9.0.1 / staticmap 0.5.5
Debian 9.5 @ kirin / 20210531

from staticmap import StaticMap, CircleMarker

m = StaticMap(3390, 2362, url_template='http://a.tile.stamen.com/toner-lite/{z}/{x}/{y}.png')

marker_outline = CircleMarker((-4.1043, 47.9968), 'white', 18)
marker = CircleMarker((-4.1043, 47.9968), '#0036FF', 12)

m.add_marker(marker_outline)
m.add_marker(marker)

image = m.render(zoom=16)
image.save('fond_de_carte_quimper.png')

Le jeu de tuile est toner-lite de Stamen (voir http://maps.stamen.com/)
Pour une raison qui m'échappe, le niveau de zoom n'est pas celui que j'avais trouvé avec OSM ?

Ce qui donne (extrait seulement, le fichier complet fait 4.8 MO)

Étape 2 : les données

Une carte de test : https://umap.openstreetmap.fr/fr/map/quimper_test_data_620279 (edit) / Les données sont exportées en
geojson depuis l'onglet «partager/exporter» de umap.

Les marqueurs sont numérotés, ils devront être reliés comme suit : (1,2), (2,3), (3,4), (4,5), (5,6), (6,7) mais par la suite ça
devra fonctionner avec n'importe quelle paire de nombre.

Installation de geojson

pip3 install geojson

Lire les données avec geojson

Les données sont extraites du fichier geojson et placées dans un dictionnaire

Lecture de données geojson
Python 3.5.3 / pip 9.0.1 / geojson 2.5.0
Debian 9.5 @ kirin / 20210531

import geojson
with open("./quimper.geojson") as f:
 data = geojson.load(f)
points = {} # créer un dictionnaire contenant les points
for feature in data['features']:
 nom = feature['properties']['name']
 lon = feature['geometry']['coordinates'][0]

https://www.openstreetmap.org/#map=13/47.9968/-4.1043
https://wiki.openstreetmap.org/wiki/Zoom_levels
http://maps.stamen.com/
http://www.lesporteslogiques.net/wiki/_media/ressource/code/cartographie/fond_de_carte_quimper_extrait.png
https://umap.openstreetmap.fr/fr/map/quimper_test_data_620279
http://umap.openstreetmap.fr/fr/map/anonymous-edit/620279:Hdo3LsEkxk_WKaNxROu4hLXWPZ4
https://en.wikipedia.org/wiki/GeoJSON

http://www.lesporteslogiques.net/wiki/ 3 / 5

 lat = feature['geometry']['coordinates'][1]
 points[nom] = [lon, lat] # placer le point dans le dictionnaire

for key, value in points.items():
 print("nom :", key, "lon :", value[0], "lat :", value[1])

Chemins
Les chemins qui relient les points sont indiqués dans une liste de liste

chemins = [
 [1, 2],
 [2, 3],
 [3, 4],
 [4, 5],
 [5, 6],
 [6, 7]
]
for chemin in chemins:
 print("Tracer un chemin entre", chemin[0], " et ", chemin[1])

Étape 3 : tout rassembler

Procédure pour le script complet :

créer le fond de carte
définir les chemins dans une structure de données
charger le fichier geojson
tracer les contours des chemins et les contours des points
tracer les couleurs pour les points et les chemins

Résultat : ça fonctionne (maintenant il restera à l'appliquer aux données réelles!), extrait :

Code complet

fond_de_carte_quimper.py (cliquer pour afficher le code)

fond_de_carte_quimper.py

Plan de circulation d'après des données geojson
Python 3.5.3 / pip 9.0.1 / geojson 2.5.0 / staticmap 0.5.5
Debian 9.5 @ kirin / 20210531

import geojson
from staticmap import StaticMap, CircleMarker, Line

m = StaticMap(3390, 2362, url_template='http://a.tile.stamen.com/toner-lite/{z}/{x}/{y}.png')

with open("./quimper.geojson") as f:
 data = geojson.load(f)

points = {} # créer un dictionnaire contenant les points

for feature in data['features']:
 nom = feature['properties']['name']
 lon = feature['geometry']['coordinates'][0]
 lat = feature['geometry']['coordinates'][1]
 points[nom] = [lon, lat] # placer le point dans le dictionnaire

Les chemins relient les points
chemins = [
 [1, 2],
 [2, 3],
 [3, 4],
 [4, 5],
 [5, 6],
 [6, 7]
]

http://www.lesporteslogiques.net/wiki/_media/ressource/code/cartographie/fond_de_carte_quimper_extrait_avec_chemin.png
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/cartographie/start?codeblock=4

http://www.lesporteslogiques.net/wiki/ 4 / 5

Tracer les contours de marqueurs et de chemins
for key, value in points.items():
 marker_outline = CircleMarker((value[0], value[1]), 'white', 42)
 m.add_marker(marker_outline)
 for chemin in chemins:
 if chemin[0] == int(key) or chemin[1] == int(key):
 point1 = str(chemin[0])
 point2 = str(chemin[1])
 coordinates = [points[point1], points[point2]]
 line_outline = Line(coordinates, 'white', 24)
 m.add_line(line_outline)

Tracer les chemins
for key, value in points.items():
 for chemin in chemins:
 if chemin[0] == int(key) or chemin[1] == int(key):
 point1 = str(chemin[0])
 point2 = str(chemin[1])
 coordinates = [points[point1], points[point2]]
 line = Line(coordinates, '#0036FF', 12)
 m.add_line(line)

Tracer les marqueurs
for key, value in points.items():
 marker = CircleMarker((value[0], value[1]), '#0036FF', 24)
 m.add_marker(marker)

image = m.render(zoom=16)
image.save('fond_de_carte_quimper.png')

Une autre carte
Cette fois, ce sont des tracés de ligne dans umap qui sont utilisés pour définir une carte de trajets. Les couleurs utilisés dans
umap définissent les différents segments des trajets.
J'ai essayé sans succès de réaliser avec Static Map une carte vide avec les noms de rues pour superposer aux trajets, mais
ça ne fonctionne pas, le cadrage de la carte se faisant en fonction des éléments placés (et du niveau de zoom), les deux
cartes ne se superposent pas.
À essayer : tracer cette seconde carte avec des tracés transparents.
Peut-être que de meilleurs résultats pourraient être obtenus avec py-staticmaps ?

fond_de_carte_quimper_trajets.py (cliquer pour afficher le code)

fond_de_carte_quimper_trajets.py

Plan de pédibus d'après des données geojson
Python 3.5.3 / pip 9.0.1 / geojson 2.5.0 / staticmap 0.5.5
Debian 9.5 @ kirin / 20210601

import geojson
from staticmap import StaticMap, CircleMarker, Line

définition choisie pour un A4 avec 5mm de marge sur chaque bord
m = StaticMap(3390, 2362, 0, 0, url_template='http://a.tile.stamen.com/toner-lite/{z}/{x}/{y}.png')

with open("./mobilite_douce_quimper.geojson") as f:
 data = geojson.load(f)

pedibus_corniguel = [] # contiendra les segments du premier trajet
pedibus_caphorn = [] # contiendra les segments du second trajet

Trier les trajets selon la couleur choisie dans umap
for feature in data['features']:
 if feature['geometry']['type'] == "LineString":
 color = feature['properties']['_umap_options']['color']
 coordinates = feature['geometry']['coordinates']
 if color == "Red":
 pedibus_caphorn.append(coordinates)
 if color == "MediumVioletRed":
 pedibus_corniguel.append(coordinates)

http://www.lesporteslogiques.net/wiki/_media/ressource/code/cartographie/fond_de_carte_quimper_pedibus_extrait.png
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/cartographie/start?codeblock=5

http://www.lesporteslogiques.net/wiki/ 5 / 5

Debug
print("pedibus_corniguel", pedibus_corniguel, "\n")
print("pedibus_caphorn", pedibus_caphorn, "\n")

Dans un premier temps, tracer les contours
for trajet in pedibus_corniguel:
 ltraj = len(trajet)
 for x in range(0, ltraj-1):
 #print(trajet[x][0], trajet[x][1], "->", trajet[x+1][0], trajet[x+1][1])
 point1 = [trajet[x][0], trajet[x][1]]
 point2 = [trajet[x+1][0], trajet[x+1][1]]
 coordinates = [point1, point2]
 line_outline = Line(coordinates, 'white', 24)
 m.add_line(line_outline)

for trajet in pedibus_caphorn:
 ltraj = len(trajet)
 for x in range(0, ltraj-1):
 #print(trajet[x][0], trajet[x][1], "->", trajet[x+1][0], trajet[x+1][1])
 point1 = [trajet[x][0], trajet[x][1]]
 point2 = [trajet[x+1][0], trajet[x+1][1]]
 coordinates = [point1, point2]
 line_outline = Line(coordinates, 'white', 24)
 m.add_line(line_outline)

Dans un second temps, trajet les chemins
for trajet in pedibus_corniguel:
 ltraj = len(trajet)
 for x in range(0, ltraj-1):
 #print(trajet[x][0], trajet[x][1], "->", trajet[x+1][0], trajet[x+1][1])
 point1 = [trajet[x][0], trajet[x][1]]
 point2 = [trajet[x+1][0], trajet[x+1][1]]
 coordinates = [point1, point2]
 line = Line(coordinates, '#e77214', 12)
 m.add_line(line)

for trajet in pedibus_caphorn:
 ltraj = len(trajet)
 for x in range(0, ltraj-1):
 #print(trajet[x][0], trajet[x][1], "->", trajet[x+1][0], trajet[x+1][1])
 point1 = [trajet[x][0], trajet[x][1]]
 point2 = [trajet[x+1][0], trajet[x+1][1]]
 coordinates = [point1, point2]
 line_outline = Line(coordinates, '#62c92b', 12)
 m.add_line(line_outline)

image = m.render(zoom=16)
image.save('fond_de_carte_quimper_pedibus.png')

Et une autre couche avec uniquement les noms de rues à superposer
malheureusement ça ne marche pas, la carte est cadrée différemment...
"""
carte_rues = StaticMap(3390, 2362, 0, 0, url_template='http://a.tile.stamen.com/toner-labels/{z}/{x}/{y}.png')
marker = CircleMarker((-4.118553, 47.985771), '#0036FF', 1)
carte_rues.add_marker(marker) # nécessaire, on ne peut pas faire le rendu d'une carte vide
image_rues = carte_rues.render(zoom=16)
image_rues.save('fond_de_carte_quimper_pedibus_labels.png')
"""
Une alternative pourrait être de recréer la page avec les trajets
en les mettant en couleur transparente

Ressources
Des alternatives / services alternatifs : https://wiki.openstreetmap.org/wiki/Static_map_images
Différents fournisseurs de tuiles (fonds de carte) : https://wiki.openstreetmap.org/wiki/Tile_servers
Les dictionnaires en python : https://www.mfitzp.com/tutorials/python-dictionaries/

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/ressource/code/cartographie/start?rev=1622643485
Article mis à jour: 2021/06/02 16:18

https://wiki.openstreetmap.org/wiki/Static_map_images
https://wiki.openstreetmap.org/wiki/Tile_servers
https://www.mfitzp.com/tutorials/python-dictionaries/
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/ressource/code/cartographie/start?rev=1622643485

	Cartographie en python
	Tests
	Static Map
	py-staticmaps

	Réalisation
	Étape 1 : le fond de carte
	Étape 2 : les données
	Étape 3 : tout rassembler
	Code complet

	Une autre carte
	Ressources

