WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662538705
Article mis a jour le : 2022/09/07 10:18 / Imprimé le 2026/02/01 19:26

Initiation aux Shaders avec Processing

Le hello World des shaders

shader 01

vert.gls|
uniform mat4 transformMatrix

attribute vec4 position
attribute vec4 color

varying vec4 vertColor

void main
gl_Position = transformMatrix * position

vertColor = color

freg.glsl

#ifdef GL ES

precision mediump float
precision mediump int
#endif

varying vec4 vertColor

void main
gl_FragColor = vertColor

shader_01.pde

PShader myShader
int margin

void setup
size , , P2D

myShader = loadShader("frag.glsl", "vert.glsl"
noStroke

void draw
background
shader (myShader
fill , ,
rect(margin, margin, width margin, height margin
resetShader // Désactive le shader, permet de redessiner normalement

Communication entre l'application et les shaders

L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé
uniform.

Fonctions Processing pour transmettre des données

set(String name, int x)

set(String name, int x, int y) -> vec2

set(String name, int x, int y, int z) -> vec3
set(String name, int x, int y, int z, int w) -> vec4d
set(String name, float x, ...)

set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'a 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4

http://www.lesporteslogiques.net/wiki/ 1/4

http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=0
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=1
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=2
http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662538705

set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple : set(“u_resolution”, 512, 512), soyez

s@r d'avoir déclaré les variables uniform pour des types entiers, comme : ivec2, ivec3...

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set(“u_resolution”,

float(512), float(512))

Textures

Fonctions utiles

Couleur

Luminance

float luma(vecd4 color
dot(color.rgb, vec3(0.299, 0.587, 0.114

Brightness

float brightness(vec4 color
dot(color.rgb , vec3(0.2126 0.7152 0.0722

Random

float random2d(vec2 coord

fract(sin(dot(coord.xy, vec2(12.9898, 78.233

Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 coord

vec2 i floor(coord

vec2 f fract(coord

// Four corners in 2D of a tile
float a random(i
float b = random(i 1.0, 0.0
float ¢ random(i + vec2(0.0, 1.0
float d random(i 1.0, 1.0
// Smooth Interpolation

// Cubic Hermite Curve. Same as SmoothStep()
vec2 u frfr(3.0-2.0%f
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
mix(a, b, u.x
[« a u.y 1.0 u.Xx
d b u.x

Simplex noise

//

// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts

// Maintainer : ijm

// Lastmod : 20110822 (ijm)

// License :

// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.

43758.5453123

http://www.lesporteslogiques.net/wiki/

// https://github.com/ashima/webgl-noise
//

// Some useful functions

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0))
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0))
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }

float snoise(vec2 v) {

// Precompute values for skewed triangular grid
const vecd C = vecd(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5%(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439) ;
// 1.0 / 41.0

// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);

// Other two corners (x1, x2)

vec2 il = vec2(0.0);

il = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - il;

vec2 x2 = x0.xy + C.zz;

// Do some permutations to avoid
// truncation effects in permutation
i = mod289(1i);
vec3 p = permute(
permute(i.y + vec3(0.0, il.y, 1.0))
+ 1i.x + vec3(0.0, il.x, 1.0));

(
dot(x0,x0)
dot(x1,x1),
dot(x2,x2)
), 0.0);

m=mm ;
m=m'm ;

// Gradients:

// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple

// of 41 (41*7 = 287)

vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;

vec3 ox = floor(x + 0.5);

vec3 ad = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a@*a@ + h*h);
m *= 1.79284291400159 - 0.85373472095314 * (a@*a®+h*h);

// Compute final noise value at P

vec3 g = vec3(0.0);

g.x =ab.x * x0.x + h.x * x0.y;

g.yz = a@.yz * vec2(xl.x,x2.x) + h.yz * vec2(xl.y,x2.y);
return 130.0 * dot(m, g);

Rotations

2D

mat2 rotation2d(
float c=cos(
float s=sin(
return mat2(

oat a) {

-

f
a
al;
c,-s,5,C);
}

vec2 rotate(vec2 v, float angle) {
return rotation2d(angle) * v;

}
3D

mat4 rotation3d(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);

* 289.0;
* 289.0;

http://www.lesporteslogiques.net/wiki/

float ¢ cos(angle

float oc [«
mat4
oc axis.x * axis.x [¢ oc axis.x * axis.y - axis.z s oc * axis.z axis.x + axis.y s
oc axis.x * axis.y axis.z s oc axis.y * axis.y [¢ oc * axis.y * axis.z axis.x s

oc axis.z axis.x axis.y s oc axis.y * axis.z axis.x s oc * axis.z axis.z c

vec3 rotate(vec3 v, vec3 axis, float angle
rotation3d(axis, angle vecd (v Xyz

Flou Gaussien

Code optimisé, d'apres https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale
vec4 blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction

const float offset float
const float weight float

vec4 colorOut = texture2D(image, uv resolution weight

int i i i
vec3 color = texture2D(image uv + direction offset|i resolution
color texture2D(image uv - direction offset[i resolution
colorOut color * weight|[i
colorOut

Librairies Processing
Quelques librairies externes pour 'utilisation de shaders dans Processing :

e https://github.com/diwi/PixelFlow

Ressources
Liste de liens incontournables pour approfondir et aller plus loin...

e https://thebookofshaders.com/
e https://www.shadertoy.com
e https://iquilezles.org/articles/functions/

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques

Adresse : http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662538705

Article mis a jour: 2022/09/07 10:18

http://www.lesporteslogiques.net/wiki/

4/4

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://github.com/diwi/PixelFlow
https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662538705

	Initiation aux Shaders avec Processing
	Le hello World des shaders
	Communication entre l'application et les shaders
	Fonctions Processing pour transmettre des données

	Textures
	Fonctions utiles
	Couleur
	Luminance
	Brightness

	Random
	Noise
	Gradient noise
	Simplex noise

	Rotations
	2D
	3D

	Flou Gaussien

	Librairies Processing
	Ressources

