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Initiation aux Shaders avec Processing

Le hello World des shaders

shader 01

vert.gls|
uniform mat4 transformMatrix

attribute vec4 position
attribute vec4 color

varying vec4 vertColor

void main
gl_Position = transformMatrix * position

vertColor = color

freg.glsl

#ifdef GL ES

precision mediump float
precision mediump int
#endif

varying vec4 vertColor

void main
gl_FragColor = vertColor

shader_01.pde

PShader myShader
int margin

void setup
size , , P2D

myShader = loadShader("frag.glsl", "vert.glsl"
noStroke

void draw
background
shader (myShader
fill , ,
rect(margin, margin, width margin, height margin
resetShader // Désactive le shader, permet de redessiner normalement

Communication entre l'application et les shaders

L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé
uniform.

Fonctions Processing pour transmettre des données

set(String name, int x)

set(String name, int x, int y) -> vec2

set(String name, int x, int y, int z) -> vec3
set(String name, int x, int y, int z, int w) -> vec4d
set(String name, float x, ...)

set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'a 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4
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set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple : set(“u_resolution”, 512, 512), soyez

s@r d'avoir déclaré les variables uniform pour des types entiers, comme : ivec2, ivec3...

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set(“u_resolution”,

float(512), float(512))

Textures

Fonctions utiles

Couleur

Luminance

float luma(vecd4 color
dot(color.rgb, vec3(0.299, 0.587, 0.114

Brightness

float brightness(vec4 color
dot( color.rgb , vec3( 0.2126 0.7152 0.0722

Random

float random2d(vec2 coord

fract(sin(dot(coord.xy, vec2(12.9898, 78.233

Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 coord

vec2 i floor(coord

vec2 f fract(coord

// Four corners in 2D of a tile
float a random(i
float b = random(i 1.0, 0.0
float ¢ random(i + vec2(0.0, 1.0
float d random(i 1.0, 1.0
// Smooth Interpolation

// Cubic Hermite Curve. Same as SmoothStep()
vec2 u frfr(3.0-2.0%f
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
mix(a, b, u.x
[« a u.y 1.0 u.Xx
d b u.x

Simplex noise

//

// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts

// Maintainer : ijm

// Lastmod : 20110822 (ijm)

// License :

// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.

43758.5453123
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// https://github.com/ashima/webgl-noise
//

// Some useful functions

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0))
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0))
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }

float snoise(vec2 v) {

// Precompute values for skewed triangular grid
const vecd C = vecd(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5%(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439) ;
// 1.0 / 41.0

// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);

// Other two corners (x1, x2)

vec2 il = vec2(0.0);

il = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - il;

vec2 x2 = x0.xy + C.zz;

// Do some permutations to avoid
// truncation effects in permutation
i = mod289(1i);
vec3 p = permute(
permute( i.y + vec3(0.0, il.y, 1.0))
+ 1i.x + vec3(0.0, il.x, 1.0 ));

(
dot(x0,x0)
dot(x1,x1),
dot(x2,x2)
), 0.0);

m=mm ;
m=m'm ;

// Gradients:

// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple

// of 41 (41*7 = 287)

vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;

vec3 ox = floor(x + 0.5);

vec3 ad = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a@*a@ + h*h);
m *= 1.79284291400159 - 0.85373472095314 * (a@*a®+h*h);

// Compute final noise value at P

vec3 g = vec3(0.0);

g.x =ab.x * x0.x + h.x * x0.y;

g.yz = a@.yz * vec2(xl.x,x2.x) + h.yz * vec2(xl.y,x2.y);
return 130.0 * dot(m, g);

Rotations

2D

mat2 rotation2d(
float c=cos(
float s=sin(
return mat2(

oat a) {

-

f
a
al;
c,-s,5,C);
}

vec2 rotate(vec2 v, float angle) {
return rotation2d(angle) * v;

}
3D

mat4 rotation3d(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);

* 289.0;
* 289.0;
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float ¢ cos(angle

float oc [«
mat4
oc axis.x * axis.x [¢ oc axis.x * axis.y - axis.z s oc * axis.z axis.x + axis.y s
oc axis.x * axis.y axis.z s oc axis.y * axis.y [¢ oc * axis.y * axis.z axis.x s

oc axis.z axis.x axis.y s oc axis.y * axis.z axis.x s oc * axis.z axis.z c

vec3 rotate(vec3 v, vec3 axis, float angle
rotation3d(axis, angle vecd (v Xyz

Flou Gaussien

Code optimisé, d'apres https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale
vec4 blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction

const float offset float
const float weight float

vec4 colorOut = texture2D(image, uv resolution weight

int i i i
vec3 color = texture2D(image uv + direction offset|i resolution
color texture2D(image uv - direction offset[i resolution
colorOut color * weight|[i
colorOut

Librairies Processing
Quelques librairies externes pour 'utilisation de shaders dans Processing :

e https://github.com/diwi/PixelFlow

Ressources
Liste de liens incontournables pour approfondir et aller plus loin...

e https://thebookofshaders.com/
e https://www.shadertoy.com
e https://iquilezles.org/articles/functions/
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