WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1670255645
Article mis a jour le : 2022/12/05 16:54 / Imprimé le 2026/02/01 19:26

processing, shaders

Initiation aux Shaders avec Processing

Le hello World des shaders

Les fichiers vert.glsl et frag.glsl sont a placer dans le dossier data du sketch.

shader_01

vert.gls|

uniform mat4 transformMatrix

attribute vec4 position
attribute vec4 color

varying vec4 vertColor

void main
gl_Position = transformMatrix * position

vertColor = color

frag.glsl

#ifdef GL ES

precision mediump float
precision mediump int
#endif

varying vec4 vertColor

void main
gl_FragColor vertColor

shader_01.pde

PShader myShader
int margin

void setup
size , , P2D

myShader = loadShader("frag.glsl", "vert.glsl"
noStroke

void draw
background
shader (myShader
fill , ,
rect(margin, margin, width margin, height margin
resetShader // Désactive le shader, permet de redessiner normalement

Communication entre l'application et les shaders

http://www.lesporteslogiques.net/wiki/

http://www.lesporteslogiques.net/wiki/tag/processing?do=showtag&tag=processing
http://www.lesporteslogiques.net/wiki/tag/shaders?do=showtag&tag=shaders
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=0
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=1
http://www.lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=2
http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1670255645

GPUL
\hrhx S\aécf

L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé

uniform.

Fonctions GLSL
e step(seuil, val)
Renvoi 0. si val < seuil, renvoi 1. si val > seulil

smoothstep(seuill, seuil2, val)
clamp()

pow()

fract()

Returns the fractional part of a number
e mod(a, b)
a modulo b

e |ength()
e atan(y,x)
e mix(vl, v2, pct)

Interpolation linéaire entre v1 et v2 en fonction de 'pct’
e sign(float val)

Renvoi -1 si val est négatif, 1 si val est positif

Fonctions Processing pour transmettre des données

set(String name, int x)

set(String name, int x, int y) -> vec2

set(String name, int x, int y, int z) -> vec3
set(String name, int x, int y, int z, int w) -> vec4d
set(String name, float x, ...)

set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'a 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4

set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple
s{r d'avoir déclaré les variables uniform pour des types entiers, comme

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set (“u_resolution”,

float(512), float(512))

:set(“u _resolution”, 512, 512), soyez

»ivec?2, ivec3...

http://www.lesporteslogiques.net/wiki/

Textures

Pour sampler un texel en GLSL (extraire la couleur d'une texture a un point donné), on utilise la fonction:
texture2D(sampler2D image, vec2 uv)
Les coordonnes UV doivent étre comprises entre 0.0 et 1.0

Elles pour origine le coin bas-gauche (0, 0) contrairement aux coordonnées d'écran, qui ont pour origine le coin haut-gauche.

Utilisation d'un buffer hors-écran

Pratique pour créer des effets avec retour d'information (feedback), comme par exemple un effet de réaction-diffusion.

PGraphics buffer = createGraphics(x, y, P2D

buffer.beginDraw

buffer.shader(myShader

buffer.rect(0, 0, buffer.width, buffer.height
buffer.endDraw

image(buffer, 0,

Fonctions utiles

Couleur

Luminance

float luma(vec4 color
dot(color.rgb, vec3

Brightness

float brightness(vec4 color
dot(color.rgb vec3

HSB -> RGB

vec3 hsb2rgb(in vec3 c

vec3 rgb clamp(abs(mod(c.x vec3
rgb rgb*rgb rgb
c.z mix(vec3 rgb, c.y
RGB -> HSB

vec3 rgb2hsb(in vec3 ¢
vecd K = vecd

vecd p = mix(vec4(c.bg, K.wz
vecd(c.gb, K.xy
step(c.b, c.g

vec4 q mix(vecd(p.xyw, c.r
vecd(c.r, p.yzx
step(p.x, c.r

float d = q.x in(g.w, q.y

float e = 1.0e-10
vec3(abs(q.z q.w - g.y
d q.x + e
q.X

Random

float random2d(vec2 coord

fract(sin(dot(coord.xy, vec2

http://www.lesporteslogiques.net/wiki/

Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 coord) {

vec2 i = floor(coord);

vec2 f = fract(coord);

// Four corners in 2D of a tile
float a = random(i);

float b = random(i + vec2(1.0, 0.0));
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));

// Smooth Interpolation

// Cubic Hermite Curve. Same as SmoothStep()
vec2 u = fHfH(3.0-2.0°F);
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
return mix(a, b, u.x) +

(c -a)*uy * (1.0 - ux) +
(d - b) “ux *u.y;

Fractional Brownian Motion

float hash(vec2 coord)

{
return fract(sin(dot(coord.xy, vec2(12.9898, 78.233))) * 43758.5453123);
}
float noise(vec2 U)
{
vec2 id = floor(U);
U = fract(U);
Uu*s=u=* (3. -2 *U);
vec2 A = vec2(hash(id), hash(id + vec2(0,1))),
B = vec2(hash(id + vec2(1,0)), hash(id + vec2(1,1))),
C = mix(A, B, U.x);
return mix(C.x, C.y, U.y);
}
/**
fBM stands for Fractional Brownian Motion
https://iquilezles.org/articles/fbm/
Set octave to 8 for a detailed noise
A value of 1.0 for H is good
*/
float fbm(vec2 x, float H, int octave)
{
float G = exp2(-H);
float f = 1.0;
float a = 1.0;
float t = 0.0;
for(int i=0; i<octave; i++)
{
t += a'noise(f*x);
f *= 2.0;
a = G;
}
return t;
}

Simplex noise

//

// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts

// Maintainer : ijm

// Lastmod : 20110822 (ijm)

// License :

// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise

//

http://www.lesporteslogiques.net/wiki/ 4/6

// Some useful functions

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x);

——_—

float snoise(vec2 v) {

// Precompute values for skewed triangular grid
const vec4 C = vecd(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5%(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439) ;
// 1.0 / 41.0

// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);

// Other two corners (x1, x2)

vec2 il = vec2(0.0);

il = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - 1il;

vec2 x2 = x0.xy + C.zz;

// Do some permutations to avoid
// truncation effects in permutation
i = mod289(1i);
vec3 p = permute(
permute(i.y + vec3(0.0, il.y, 1.0))
+ 1i.x + vec3(0.0, il.x, 1.0));

vec3 m = max(0.5 - vec3

(
dot(x0,x0),
dot(x1,x1),
dot(x2,x2)
), 0.0);

m=mm ;
m=mm ;

// Gradients:

// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple

// of 41 (41*7 = 287)

vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;

vec3 ox = floor(x + 0.5);

vec3 ad = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a@*a@ + h*h);
m = 1.79284291400159 - 0.85373472095314 * (a@*a0+h*h);

// Compute final noise value at P

vec3 g = vec3(0.0);

g.x =ab.x * x0.x + h.x *x0.y;

g.yz = a0.yz * vec2(x1l.x,x2.x) + h.yz * vec2(x1l.y,x2.y);
return 130.0 * dot(m, g);

}

Rotations

2D

mat2 rotation2d(float a) {
float c=cos(a);
float s=sin(a);
return mat2(c,-s,s,c);

}

vec2 rotate(vec2 v, float angle) {
return rotation2d(angle) * v;
}

3D

mat4 rotation3d(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float ¢ = cos(angle);
float oc = 1.0 - c;

http://www.lesporteslogiques.net/wiki/

mat4
oc * axis.x * axis.x + cC oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s

oc axis.x * axis.y + axis.z s oc axis.y * axis.y [« oc * axis.y * axis.z axis.x s
oc axis.z axis.x axis.y s oc axis.y * axis.z axis.x s oc * axis.z axis.z [«

vec3 rotate(vec3 v, vec3 axis, float angle
rotation3d(axis, angle vec4d (v Xyz

Flou Gaussien

Code optimisé, d'apres https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale

vecd4 blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction

const float offset float
const float weight float
vec4 colorQOut texture2D(image, uv resolution weight
int i i i
vec3 color = texture2D(image uv + direction offset[i resolution
color texture2D (image uv - direction offset[i resolution
colorOut color * weight[i
colorQut

Librairies Processing
Quelques librairies externes pour I'utilisation de shaders dans Processing :

o https://github.com/diwi/PixelFlow

Ressources
Liste de liens incontournables pour approfondir et aller plus loin...

e https://thebookofshaders.com/
e https://www.shadertoy.com
e https://iquilezles.org/articles/functions/

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1670255645
Article mis a jour: 2022/12/05 16:54

http://www.lesporteslogiques.net/wiki/

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://github.com/diwi/PixelFlow
https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1670255645

	Initiation aux Shaders avec Processing
	Le hello World des shaders
	Communication entre l'application et les shaders
	Fonctions GLSL
	Fonctions Processing pour transmettre des données

	Textures
	Utilisation d'un buffer hors-écran
	Fonctions utiles
	Couleur
	Luminance
	Brightness
	HSB -> RGB
	RGB -> HSB

	Random
	Noise
	Gradient noise
	Fractional Brownian Motion
	Simplex noise

	Rotations
	2D
	3D

	Flou Gaussien

	Librairies Processing
	Ressources

