
WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1640814804
Article mis à jour le : 2021/12/29 22:53 / Imprimé le 2026/02/15 07:53

http://www.lesporteslogiques.net/wiki/ 1 / 7

Reconnaissance vocale et transcription (STT) avec
Vosk
En recherchant un programme de transcription de l'audio à l'écrit (STT pour “Speak To Text”) je suis tombé sur un article
intéressant.

Parmi les différents programmes proposés sur l'article il a fallu trier ceux qu'on pouvait piloter depuis Python ne garder que
ceux qui offraient des modèles entraînés avec la langue française. On aurait très bien pu entraîner notre propre modèle si on
avait eu des heures d'extraits audio sous le coude (avec transcription écrite à la main d'humain) et des flopées de GigaFlops.

Comme ce n'est pas le cas, mon choix s'est arrêté sur VOSK

Installation
Je n'ai pas réussi à installer VOSK avec une version de Python inférieure à la 3.8 donc il est conseillé de mettre à jour votre
interpréteur Python si besoin.

Il vous faudra également PIP, le récupérateur de packets Python.

$ apt install python3-pip

C'est une bonne pratique de créer un environnement virtuel avant d'installer les packets nécessaires :

$ python3.8 -m venv env
$ source env/bin/activate
$ pip3 install vosk

Dans le cas où vous voulez pouvoir utiliser un micro (pour de la transcription en temps réel par exemple) il faudra également
installer la librairie `sounddevice`

$ pip3 install sounddevice

Bien, mais de base VOSK est vierge de tout apprentissage. Il faut donc lui fournir un modèle pré-entraîné sur la langue de
votre choix.

Utilisation de modèles pré-entraînés
Quelques modèles sont proposés à l'adresse suivante : https://alphacephei.com/vosk/models

J'ai eu l'occasion de tester deux modèles :

https://alphacephei.com/vosk/models/vosk-model-small-fr-pguyot-0.3.zip Très léger (<50 Mo) mais peu précis. Conseillé pour
les machines peu performantes, téléphonie mobile ou Raspberry Pi.

https://alphacephei.com/vosk/models/vosk-model-fr-0.6-linto-2.2.0.zip Plus gros (1,5 Go) mais bien meilleures performances.
C'est le modèle qui a été utilisé lors de la résidence “Artificialité Insolente” sur l'installation “Nathalie”.

Les modèles sont à décompresser dans le dossier model

Sur la page https://github.com/alphacep/vosk-api/tree/master/python/example on peut trouver plusieurs scripts Python pour
interroger le modèle de plusieurs façons.

Transcription d'un fichier audio vers fichier texte
Utilisation avec le modèle vosk-model-en-us-0.22

https://fosspost.org/open-source-speech-recognition/
https://fosspost.org/open-source-speech-recognition/
https://alphacephei.com/vosk/
https://alphacephei.com/vosk/models
https://alphacephei.com/vosk/models/vosk-model-small-fr-pguyot-0.3.zip
https://alphacephei.com/vosk/models/vosk-model-fr-0.6-linto-2.2.0.zip
http://www.lesporteslogiques.net/wiki/recherche/residence_artificialite_insolente/start
https://github.com/alphacep/vosk-api/tree/master/python/example
http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1640814804

http://www.lesporteslogiques.net/wiki/ 2 / 7

Bizarrement le script plante avec ce modèle, après ce dernier message:

LOG (VoskAPI:ReadDataFiles():model.cc:307) Loading RNNLM model from model/vosk-model-en-
us-0.22/rnnlm/final.raw

Une solution (pas super satisfaisante) consiste a supprimer le dossier rnnlm…

Transcription depuis un microphone
Pour utiliser le script çi-dessous, exécutez-le d'abord avec l'argument -l pour obtenir la liste des périphériques audio
connectés à votre machine :

$ python3 test_microphone.py -l

Ensuite (ou n correspond au numéro de l'interface audio récupérée précédemment) :

$ python3 test_microphone.py -d n

test_microphone.py (cliquer pour afficher le code)

test_microphone.py

#!/usr/bin/env python3

import argparse
import os
import queue
import sounddevice as sd
import vosk
import sys

q = queue.Queue()

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

def callback(indata, frames, time, status):
 """This is called (from a separate thread) for each audio block."""
 if status:
 print(status, file=sys.stderr)
 q.put(bytes(indata))

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 '-f', '--filename', type=str, metavar='FILENAME',
 help='text file to store transcriptions')
parser.add_argument(
 '-m', '--model', type=str, metavar='MODEL_PATH',
 help='Path to the model')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='input device (numeric ID or substring)')
parser.add_argument(
 '-r', '--samplerate', type=int, help='sampling rate')
args = parser.parse_args(remaining)

try:
 if args.model is None:
 args.model = "model"
 if not os.path.exists(args.model):
 print ("Please download a model for your language from https://alphacephei.com/vosk/models")
 print ("and unpack as 'model' in the current folder.")
 parser.exit(0)
 if args.samplerate is None:
 device_info = sd.query_devices(args.device, 'input')
 # soundfile expects an int, sounddevice provides a float:

http://www.lesporteslogiques.net/wiki/_export/code/ressource/logiciel/vosk/start?codeblock=0

http://www.lesporteslogiques.net/wiki/ 3 / 7

 args.samplerate = int(device_info['default_samplerate'])

 model = vosk.Model(args.model)

 if args.filename:
 dump_fn = open(args.filename, "a")
 else:
 dump_fn = None

 with sd.RawInputStream(samplerate=args.samplerate, blocksize = 1024, device=args.device, dtype='int16',
 channels=1, latency='high', callback=callback):
 print('#' * 80)
 print('Press Ctrl+C to stop the recording')
 print('#' * 80)

 rec = vosk.KaldiRecognizer(model, args.samplerate)
 while True:
 data = q.get()
 if rec.AcceptWaveform(data):
 r = eval(rec.Result())
 t = r["text"]
 if t:
 print(t)
 if dump_fn is not None and len(t) > 5:
 dump_fn.write(t+'\n')

except KeyboardInterrupt:
 print('\nDone')
 parser.exit(0)
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Entraînement d'un nouveau modèle linguistique et acoustique
Tutoriaux

https://towardsdatascience.com/how-to-start-with-kaldi-and-speech-recognition-a9b7670ffff6

http://kaldi-asr.org/doc/kaldi_for_dummies.html

http://kaldi-asr.org/doc/data_prep.html

https://www.eleanorchodroff.com/tutorial/kaldi/training-acoustic-models.html

https://web.stanford.edu/class/cs224s/assignments/a3/

Installation de Kaldi et initialisation du projet

Kaldi est un kit d'outils pour la création de modèles linguistiques. Les modèles sont ensuite utilisés par VOSK pour faciliter
leur utilisation pour la reconnaissance vocale.

Les instruction pour l'installation sont dans le fichier tools/INSTALL

Cloner le répo de Kaldi : https://github.com/kaldi-asr/kaldi

Vérifier les dépendances :

$./tools/extras/check_dependencies.sh

Installation des outils nécessaires à Kaldi :

$ cd tools
$ make

Installation de Intel Math Kernel Library (optimisation des opération d'algèbre linéaire) :

$ sudo ./tools/extra/install_mkl.sh

Installation de kaldi :

$ cd src
$./configure
$ make -j clean depend
$ make -j <NCPU> # où <NCPU> est le nombre de coeurs de processeurs à utiliser pour la compilation

https://towardsdatascience.com/how-to-start-with-kaldi-and-speech-recognition-a9b7670ffff6
http://kaldi-asr.org/doc/kaldi_for_dummies.html
http://kaldi-asr.org/doc/data_prep.html
https://www.eleanorchodroff.com/tutorial/kaldi/training-acoustic-models.html
https://web.stanford.edu/class/cs224s/assignments/a3/
https://github.com/kaldi-asr/kaldi

http://www.lesporteslogiques.net/wiki/ 4 / 7

Créer un nouveau dossier pour le projet dans le dossier egs (mycorpus dans l'exemple ci-dessous)

Recréer l'arborescence ci-dessous à partir du dossier mycorpus (les lignes rouges pointillées sont des liens symboliques) :

cd mycorpus
ln -s ../wsj/s5/steps .
ln -s ../wsj/s5/utils .
ln -s ../../src .
cp ../wsj/s5/path.sh .

Traitement des fichiers son

Détection des silences et des non silences avec Python

https://librosa.org/

Création des fichiers du dossier 'data/train'

Les fichiers essentiels à la création d'un modèle kaldi sont : wav.scp, utt2spk, spk2utt et text.

Fichier 'text'

s5# head -3 data/train/text
sw02001-A_000098-001156 HI UM YEAH I'D LIKE TO TALK ABOUT HOW YOU DRESS FOR WORK AND
sw02001-A_001980-002131 UM-HUM
sw02001-A_002736-002893 AND IS

The first element on each line is the utterance-id, which is an arbitrary text string, but if you have speaker information in
your setup, you should make the speaker-id a prefix of the utterance id; this is important for reasons relating to the
sorting of these files. The rest of the line is the transcription of each sentence. You don't have to make sure that all words in
this file are in your vocabulary; out of vocabulary words will get mapped to a word specified in the file data/lang/oov.txt.

It needs to be the case that when you sort both the utt2spk and spk2utt files, the orders “agree”, e.g. the list of speaker-
ids extracted from the utt2spk file is the same as the string sorted order. The easiest way to make this happen is to make
the speaker-ids a prefix of the utter. Although, in this particular example we have used an underscore to separate the
“speaker” and “utterance” parts of the utterance-id, in general it is probably safer to use a dash (“-”). This is because it has
a lower ASCII value; if the speaker-ids vary in length, in certain cases the speaker-ids and their corresponding utterance ids
can end up being sorted in different orders when using the standard “C”-style ordering on strings, which will lead to a crash.
Another important file is wav.scp. In the Switchboard example,

Fichier 'wav.scp'

s5# head -3 data/train/wav.scp
sw02001-A /home/dpovey/kaldi-trunk/tools/sph2pipe_v2.5/sph2pipe -f wav -p -c 1 /export/corpora3/LDC/LDC97S62/swb1/sw02001.sph |
sw02001-B /home/dpovey/kaldi-trunk/tools/sph2pipe_v2.5/sph2pipe -f wav -p -c 2 /export/corpora3/LDC/LDC97S62/swb1/sw02001.sph |

The format of this file is

<recording-id> <extended-filename>

where the “extended-filename” may be an actual filename, or as in this case, a command that extracts a wav-format file.
The pipe symbol on the end of the extended-filename specifies that it is to be interpreted as a pipe. We will explain what
“recording-id” is below, but we would first like to point out that if the “segments” file does not exist, the first token on each
line of “wav.scp” file is just the utterance id. The files in wav.scp must be single-channel (mono); if the underlying wav files
have multiple channels, then a sox command must be used in the wav.scp to extract a particular channel.

Fichier 'segments'

In the Switchboard setup we have the “segments” file, so we'll discuss this next.

s5# head -3 data/train/segments

http://www.lesporteslogiques.net/wiki/lib/exe/fetch.php?tok=c7bfda&media=https%3A%2F%2Fwww.eleanorchodroff.com%2Ftutorial%2Fkaldi%2Fimages%2Fdirectorystructure2.png
https://librosa.org/

http://www.lesporteslogiques.net/wiki/ 5 / 7

sw02001-A_000098-001156 sw02001-A 0.98 11.56
sw02001-A_001980-002131 sw02001-A 19.8 21.31
sw02001-A_002736-002893 sw02001-A 27.36 28.93

The format of the “segments” file is:

<utterance-id> <recording-id> <segment-begin> <segment-end>

where the segment-begin and segment-end are measured in seconds. These specify time offsets into a recording. The
“recording-id” is the same identifier as is used in the “wav.scp” file– again, this is an arbitrary identifier that you can choose.

Fichier 'utt2spk'

The last file you need to create yourself is the “utt2spk” file. This says, for each utterance, which speaker spoke it.

s5# head -3 data/train/utt2spk
sw02001-A_000098-001156 2001-A
sw02001-A_001980-002131 2001-A
sw02001-A_002736-002893 2001-A

The format is

<utterance-id> <speaker-id>

Note that the speaker-ids don't need to correspond in any very accurate sense to the names of actual speakers– they simply
need to represent a reasonable guess. In this case we assume each conversation side (each side of the telephone
conversation) corresponds to a single speaker. This is not entirely true – sometimes one person may hand the phone to
another person, or the same person may be speaking in multiple calls – but it's good enough for our purposes. If you have no
information at all about the speaker identities, you can just make the speaker-ids the same as the utterance-ids , so the
format of the file would be just <utterance-id> <utterance-id>. We have made the previous sentence bold because we have
encountered people creating a “global” speaker-id. This is a bad idea because it makes cepstral mean normalization
ineffective in training (since it's applied globally), and because it will create problems when you use utils/split_data_dir.sh to
split your data into pieces.

Fichier 'reco2file_and_channel' (optionnel)

The file “reco2file_and_channel” is only used when scoring (measuring error rates) with NIST's “sclite” tool:

s5# head -3 data/train/reco2file_and_channel
sw02001-A sw02001 A
sw02001-B sw02001 B
sw02005-A sw02005 A

The format is:

<recording-id> <filename> <recording-side (A or B)>

The filename is typically the name of the .sph file, without the suffix, but in general it's whatever identifier you have in your
“stm” file. The recording side is a concept that relates to telephone conversations where there are two channels, and if not,
it's probably safe to use “A”. If you don't have an “stm” file or you have no idea what this is all about, then you don't need
the “reco2file_and_channel” file.

Fichier 'spk2gender' (optionnel)

There is another file that exists in some setups; it is used only occasionally and not in the Kaldi system build. We show what
it looks like in the Resource Management (RM) setup:

s5# head -3 ../../rm/s5/data/train/spk2gender
adg0 f
ahh0 m
ajp0 m

This file maps from speaker-id to either “m” or “f” depending on the speaker gender.

http://www.lesporteslogiques.net/wiki/ 6 / 7

Une fois tous les fichiers crées, lancer la commande :

$ utils/fix_data_dir.sh data/train

Fichiers du dossier 'data/local/lang'

Fichiers de donnés liés au langage. On doit fournir : lexicon.txt, nonsilence_phones.txt, optional_silence.txt,
silence_phones.txt et extra_questions.txt (optionnel).

Fichier 'lexicon.txt'

Le fichier lexicon.txt contient la liste de chaque mot du corpus (en majuscule), suivi de sa prononciation phonétique.

Exemple:

WORD W ER D
LEXICON L EH K S IH K AH N

The pronunciation alphabet must be based on the same phonemes you wish to use for your acoustic models. You must also
include lexical entries for each “silence” or “out of vocabulary” phone model you wish to train.

https://en.wikipedia.org/wiki/ARPABET

On peut s'aider de cet outil en ligne pour la construction du fichier lexicon.txt (mais se limite à la prononciation anglaise)
: http://www.speech.cs.cmu.edu/tools/lextool.html

Liens pour la phonétique de la langue bretonne :

https://en.wikipedia.org/wiki/Help:IPA/Breton
https://en.m.wikiversity.org/wiki/Breton/Breton_pronunciation
http://www.kervarker.org/en/courseintro_03_noid.html
https://en.wikipedia.org/wiki/Breton_language#Geographic_distribution_and_dialects

Fichier 'nonsilence_phones.txt'

Liste de tous les phonèmes utilisés dans notre corpus

Une fois les fichiers crées, lancer la commande :

$ utils/prepare_lang.sh data/local/dict '<UNK>' data/local/lang data/lang

Modèles basés sur un réseau neuronal profond

https://kaldi-asr.org/doc/dnn.html
http://www.cs.cmu.edu/~ymiao/kaldipdnn.html

Utilisation du modèle post entraînement

https://medium.com/@nithinraok_/decoding-an-audio-file-using-a-pre-trained-model-with-kaldi-c1d7d2fe3dc5

Entrainement d'un modèle compatible VOSK

Un tutorial concis et complet que j'aurais aimé découvrir plus tôt : https://github.com/matteo-39/vosk-build-model

L'utilisation de VOSK simplifie énormément le décodage d'un fichier son avec un modèle Kaldi. Il faut toutefois noter que
VOSK n'accepte que les modèles d'un format particulier.

D'après la page https://alphacephei.com/vosk/models il est recommandé d'utiliser la recette mini-librispeech, présent
sous le dossier “egs” du dossier d'installation de kaldi. Il faudra modifier les scripts cmd.sh et run.sh pour les adapter à
votre configuration et à vos données.

https://en.wikipedia.org/wiki/ARPABET
http://www.speech.cs.cmu.edu/tools/lextool.html
https://en.wikipedia.org/wiki/Help:IPA/Breton
https://en.m.wikiversity.org/wiki/Breton/Breton_pronunciation
http://www.kervarker.org/en/courseintro_03_noid.html
https://en.wikipedia.org/wiki/Breton_language#Geographic_distribution_and_dialects
https://kaldi-asr.org/doc/dnn.html
http://www.cs.cmu.edu/~ymiao/kaldipdnn.html
https://medium.com/@nithinraok_/decoding-an-audio-file-using-a-pre-trained-model-with-kaldi-c1d7d2fe3dc5
https://github.com/matteo-39/vosk-build-model
https://alphacephei.com/vosk/models

http://www.lesporteslogiques.net/wiki/ 7 / 7

Il faudra également remplacer le dernier script exécuté par run.sh : local/chain2/run_tdnn.sh, par le script fourni sur
la page de VOSK : https://github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/s5/local/chain/tuning/run_tdnn_1j.sh.
Ce script nécessitera également des modification pour l'adapter à votre situation. (réduction de nombre de jobs en parallèle
(option $nj) et désactivation de l'utilisation du GPU dans mon cas)

Troubleshooting

Ne pas laisser de caractères spéciaux dans le nom des fichiers de données du corpus, ni d'espaces dans le noms des
dossiers (un '&' dans le nom d'une archive sonore peut faire planter la phase d'entrainement du RN)

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1640814804
Article mis à jour: 2021/12/29 22:53

https://github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/s5/local/chain/tuning/run_tdnn_1j.sh
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1640814804

	Reconnaissance vocale et transcription (STT) avec Vosk
	Installation
	Utilisation de modèles pré-entraînés
	Transcription d'un fichier audio vers fichier texte
	Utilisation avec le modèle vosk-model-en-us-0.22

	Transcription depuis un microphone
	Entraînement d'un nouveau modèle linguistique et acoustique
	Tutoriaux
	Installation de Kaldi et initialisation du projet
	Traitement des fichiers son
	Création des fichiers du dossier 'data/train'
	Fichier 'text'
	Fichier 'wav.scp'
	Fichier 'segments'
	Fichier 'utt2spk'
	Fichier 'reco2file_and_channel' (optionnel)
	Fichier 'spk2gender' (optionnel)

	Fichiers du dossier 'data/local/lang'
	Fichier 'lexicon.txt'
	Liens pour la phonétique de la langue bretonne :

	Fichier 'nonsilence_phones.txt'

	Modèles basés sur un réseau neuronal profond
	Utilisation du modèle post entraînement
	Entrainement d'un modèle compatible VOSK
	Troubleshooting

