WIKI Les Portes Logiques
Adresse de l'article : http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1646517341
Article mis a jour le : 2022/03/05 22:55 / Imprimé le 2026/02/15 07:52

Reconnaissance vocale et transcription (STT) avec
Vosk

En recherchant un programme de transcription de I'audio a I'écrit (STT pour “Speak To Text") je suis tombé sur un article
intéressant.

Parmi les différents programmes proposés sur l'article il a fallu trier ceux qu'on pouvait piloter depuis Python ne garder que
ceux qui offraient des modéles entrainés avec la langue francaise. On aurait trés bien pu entrainer notre propre modéle si on
avait eu des heures d'extraits audio sous le coude (avec transcription écrite a la main d'humain) et des flopées de GigaFlops.

Comme ce n'est pas le cas, mon choix s'est arrété sur VOSK

Installation

Je n'ai pas réussi a installer VOSK avec une version de Python inférieure a la 3.8 donc il est conseillé de mettre a jour votre
interpréteur Python si besoin.

Il vous faudra également PIP, le récupérateur de packets Python.
$ apt install python3-pip
C'est une bonne pratique de créer un environnement virtuel avant d'installer les packets nécessaires :

$ python3.8 -m venv env
$ source env/bin/activate
$ pip3 install vosk

Dans le cas ou vous voulez pouvoir utiliser un micro (pour de la transcription en temps réel par exemple) il faudra également
installer la librairie *sounddevice®

$ pip3 install sounddevice

Bien, mais de base VOSK est vierge de tout apprentissage. Il faut donc lui fournir un modele pré-entrainé sur la langue de
votre choix.

Utilisation de modeles pré-entrainés
Quelques modeles sont proposés a |'adresse suivante : https://alphacephei.com/vosk/models
J'ai eu 'occasion de tester deux modeles :

https://alphacephei.com/vosk/models/vosk-model-small-fr-pguyot-0.3.zip Tres léger (<50 Mo) mais peu précis. Conseillé pour
les machines peu performantes, téléphonie mobile ou Raspberry Pi.

https://alphacephei.com/vosk/models/vosk-model-fr-0.6-linto-2.2.0.zip Plus gros (1,5 Go) mais bien meilleures performances.
C'est le modele qui a été utilisé lors de la résidence “Artificialité Insolente” sur I'installation “Nathalie”.

Les modeles sont a décompresser dans le dossier model

Sur la page https://github.com/alphacep/vosk-api/tree/master/python/example on peut trouver plusieurs scripts Python pour
interroger le modéle de plusieurs facons.

Transcription d'un fichier audio vers fichier texte

Utilisation avec le modele vosk-model-en-us-0.22

http://www.lesporteslogiques.net/wiki/ 1/7


https://fosspost.org/open-source-speech-recognition/
https://fosspost.org/open-source-speech-recognition/
https://alphacephei.com/vosk/
https://alphacephei.com/vosk/models
https://alphacephei.com/vosk/models/vosk-model-small-fr-pguyot-0.3.zip
https://alphacephei.com/vosk/models/vosk-model-fr-0.6-linto-2.2.0.zip
http://www.lesporteslogiques.net/wiki/recherche/residence_artificialite_insolente/start
https://github.com/alphacep/vosk-api/tree/master/python/example
http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1646517341

Bizarrement le script plante avec ce modeéle, apres ce dernier message:

LOG (VoskAPI:ReadDataFiles():model.cc:307) Loading RNNLM model from model/vosk-model-en-
us-0.22/rnnlm/final. raw

Une solution (pas super satisfaisante) consiste a supprimer le dossier rnnlm...

Transcription depuis un microphone

Pour utiliser le script ¢i-dessous, exécutez-le d'abord avec I'argument -1 pour obtenir la liste des périphériques audio
connectés a votre machine :

$ python3 test_microphone.py -1

Ensuite (ou n correspond au numéro de I'interface audio récupérée précédemment) :

$ python3 test_microphone.py -d n
test_microphone.py (cliquer pour afficher le code)

test_microphone.py
#!/usr/bin/env python3

argparse
0s

queue

sounddevice sd
vosk

sys

q = queue.Queue

int_or str(text):
"""Helper function for argument parsing."""

int(text
ValueError:
text

callback(indata, frames, time, status):
"""This is called (from a separate thread) for each audio block."""
status:
status, file=sys.stderr
q.put(bytes(indata

parser = argparse.ArgumentParser(add_help=False
parser.add_argument
'-1', '--list-devices', action='store true’
help='show list of audio devices and exit'
args, remaining = parser.parse_known args
args.list devices:
sd.query_devices
parser.exit(0
parser argparse.ArgumentParser
description=__doc_
formatter class=argparse.RawDescriptionHelpFormatter
parents=[parser
parser.add_argument
'-f', '--filename', type=str, metavar='FILENAME'
help='text file to store transcriptions'’
parser.add argument
‘-m', '--model', type=str, metavar='MODEL PATH'
help='Path to the model’
parser.add_argument
'-d', '--device', type=int_or_str
help="'input device (numeric ID or substring)'’
parser.add argument
‘-r', '--samplerate', type-int, help='sampling rate’
args = parser.parse_args(remaining

args.model None:
args.model "model"
os.path.exists(args.model):

"Please download a model for your language from https://alphacephei.com/vosk/models"
"and unpack as 'model' in the current folder."

parser.exit(0

args.samplerate None:

device info = sd.query devices(args.device, 'input'

# soundfile expects an int, sounddevice provides a float:

http://www.lesporteslogiques.net/wiki/


http://www.lesporteslogiques.net/wiki/_export/code/ressource/logiciel/vosk/start?codeblock=0

args.samplerate = int(device_info['default_samplerate’
model = vosk.Model(args.model

args.filename:
dump_fn open(args.filename, "a"

dump_fn = None

sd.RawInputStream(samplerate=args.samplerate, blocksize device=args.device, dtype
channels latency="high', callback=callback
[P
'Press Ctrl+C to stop the recording'
o

rec vosk.KaldiRecognizer(model, args.samplerate
True:
data = g.get
rec.AcceptWaveform(data):
r = eval(rec.Result
t ri"text"
t:
t
dump_fn None len(t
dump_fn.write(t+'\n'

KeyboardInterrupt:
‘\nDone'
parser.exit
Exception e:
parser.exit(type(e). name + ': ' + str(e

'intl6'

Entrainement d'un nouveau modele linguistique et acoustique

Tutoriaux
https://towardsdatascience.com/how-to-start-with-kaldi-and-speech-recognition-a9b7670ffffé
http://kaldi-asr.org/doc/kaldi_for_dummies.html

http://kaldi-asr.org/doc/data_prep.html
https://www.eleanorchodroff.com/tutorial/kaldi/training-acoustic-models.html

https://web.stanford.edu/class/cs224s/assignments/a3/

Installation de Kaldi et initialisation du projet

Kaldi est un kit d'outils pour la création de modeles linguistiques. Les modeles sont ensuite utilisés par VOSK pour faciliter

leur utilisation pour la reconnaissance vocale.

Les instruction pour l'installation sont dans le fichier tools/INSTALL
Cloner le répo de Kaldi : https://github.com/kaldi-asr/kaldi

$ git clone https://github.com/kaldi-asr/kaldi

Vérifier les dépendances :

$ ./tools/extras/check_dependencies.sh

Installation des outils nécessaires a Kaldi :

$ cd tools
$ make

Installation de Intel Math Kernel Library (optimisation des opération d'algébre linéaire) :
$ sudo ./tools/extra/install_mkl.sh
Installation de kaldi :

$ cd src
$ ./configure

http://www.lesporteslogiques.net/wiki/


https://towardsdatascience.com/how-to-start-with-kaldi-and-speech-recognition-a9b7670ffff6
http://kaldi-asr.org/doc/kaldi_for_dummies.html
http://kaldi-asr.org/doc/data_prep.html
https://www.eleanorchodroff.com/tutorial/kaldi/training-acoustic-models.html
https://web.stanford.edu/class/cs224s/assignments/a3/
https://github.com/kaldi-asr/kaldi

$ make -j clean depend
$ make -j <NCPU> # ou <NCPU> est le nombre de coeurs de processeurs a utiliser pour la compilation

Créer un nouveau dossier pour le projet dans le dossier egs (mycorpus dans I'exemple ci-dessous)

Recréer I'arborescence ci-dessous a partir du dossier mycorpus (les lignes rouges pointillées sont des liens symboliques) :

=]

cd mycorpus

ln -s ../wsj/s5/steps .
ln -s ../wsj/s5/utils .
In -s ../../src .

cp ../wsj/s5/path.sh .

Traitement des fichiers son

Conversion en wav mono 16 bits et avec une fréquence d’'échantillonnage de 16000 Hz

$ ffmpeg -i in.mp3 -acodec pcm sl6le -ac 1 -ar 16000 out.wav
Détection des silences et des non silences avec Python

https://librosa.org/

Création des fichiers du dossier 'data/train'

Les fichiers essentiels a la création d'un modele kaldi sont : wav.scp, utt2spk, spk2utt et text.

Fichier 'text'

s5# head -3 data/train/text

sw02001-A 000098-001156 HI UM YEAH I'D LIKE TO TALK ABOUT HOW YOU DRESS FOR WORK AND
sw02001-A 001980-002131 UM-HUM

sw02001-A_002736-002893 AND IS

The first element on each line is the utterance-id, which is an arbitrary text string, but if you have speaker information in
your setup, you should make the speaker-id a prefix of the utterance id; this is important for reasons relating to the
sorting of these files. The rest of the line is the transcription of each sentence. You don't have to make sure that all words in
this file are in your vocabulary; out of vocabulary words will get mapped to a word specified in the file data/lang/oov.txt.

It needs to be the case that when you sort both the utt2spk and spk2utt files, the orders “agree”, e.g. the list of speaker-
ids extracted from the utt2spk file is the same as the string sorted order. The easiest way to make this happen is to make
the speaker-ids a prefix of the utter. Although, in this particular example we have used an underscore to separate the
“speaker” and “utterance” parts of the utterance-id, in general it is probably safer to use a dash (“-"). This is because it has
a lower ASCII value; if the speaker-ids vary in length, in certain cases the speaker-ids and their corresponding utterance ids
can end up being sorted in different orders when using the standard “C"-style ordering on strings, which will lead to a crash.
Another important file is wav . scp. In the Switchboard example,

Fichier 'wav.scp'

s5# head -3 data/train/wav.scp
sw02001-A /home/dpovey/kaldi-trunk/tools/sph2pipe v2.5/sph2pipe -f wav -p -c 1 /export/corpora3/LDC/LDC97562/swb1/sw02001.sph |
sw02001-B /home/dpovey/kaldi-trunk/tools/sph2pipe v2.5/sph2pipe -f wav -p -c 2 /export/corpora3/LDC/LDC97562/swb1l/sw02001.sph |

The format of this file is
<recording-id> <extended-filename>

where the “extended-filename” may be an actual filename, or as in this case, a command that extracts a wav-format file.
The pipe symbol on the end of the extended-filename specifies that it is to be interpreted as a pipe. We will explain what
recording-id is below, but we would first like to point out that if the segments file does not exist, the first token on each
line of wav. scp file is just the utterance id. The files in wav.scp must be single-channel (mono); if the underlying wav files
have multiple channels, then a sox command must be used in the wav . scp to extract a particular channel.

http://www.lesporteslogiques.net/wiki/ 477


http://www.lesporteslogiques.net/wiki/lib/exe/fetch.php?tok=c7bfda&media=https%3A%2F%2Fwww.eleanorchodroff.com%2Ftutorial%2Fkaldi%2Fimages%2Fdirectorystructure2.png
https://librosa.org/

Fichier 'segments'

In the Switchboard setup we have the segments file, so we'll discuss this next.
s5# head -3 data/train/segments

sw02001-A_000098-001156 swb2001-A 0.98 11.56
sw02001-A_001980-002131 sw02001-A 19.8 21.31
sw02001-A 002736-002893 sw02001-A 27.36 28.93

The format of the segments file is:
<utterance-id> <recording-id> <segment-begin> <segment-end>

where the segment-begin and segment-end are measured in seconds. These specify time offsets into a recording. The
recording-1id is the same identifier as is used in the wav . scp file- again, this is an arbitrary identifier that you can
choose.

Fichier 'utt2spk’

The last file you need to create yourself is the utt2spk file. This says, for each utterance, which speaker spoke it.

s5# head -3 data/train/utt2spk
sw02001-A 000098-001156 2001-A
sw02001-A_001980-002131 2001-A
sw02001-A_002736-002893 2001-A

The format is
<utterance-id> <speaker-id>

Note that the speaker-ids don't need to correspond in any very accurate sense to the names of actual speakers- they simply
need to represent a reasonable guess. In this case we assume each conversation side (each side of the telephone
conversation) corresponds to a single speaker. This is not entirely true - sometimes one person may hand the phone to
another person, or the same person may be speaking in multiple calls - but it's good enough for our purposes. If you have no
information at all about the speaker identities, you can just make the speaker-ids the same as the utterance-ids , so the
format of the file would be just <utterance-id> <utterance-id>. We have made the previous sentence bold because
we have encountered people creating a “global” speaker-id. This is a bad idea because it makes cepstral mean
normalization ineffective in training (since it's applied globally), and because it will create problems when you use
utils/split data dir.sh to split your data into pieces.

Fichier 'reco2file_and_channel' (optionnel)

The file reco2file _and channel is only used when scoring (measuring error rates) with NIST's sclite tool:

s5# head -3 data/train/reco2file_and_channel
sw02001-A sw02001 A
sw02001-B sw02001 B
sw02005-A sw02005 A

The format is:
<recording-id> <filename> <recording-side (A or B)>

The filename is typically the name of the .sph file, without the suffix, but in general it's whatever identifier you have in your
stm file. The recording side is a concept that relates to telephone conversations where there are two channels, and if not,
it's probably safe to use “A”. If you don't have an stm file or you have no idea what this is all about, then you don't need the
“reco2file_and_channel” file.

Fichier 'spk2gender' (optionnel)

There is another file that exists in some setups; it is used only occasionally and not in the Kaldi system build. We show what

http://www.lesporteslogiques.net/wiki/ 5/7



it looks like in the Resource Management (RM) setup:

s5# head -3 ../../rm/s5/data/train/spk2gender
adg0 f
ahh0 m
ajpd m

This file maps from speaker-id to either “m” or “f” depending on the speaker gender.

Une fois tous les fichiers crées, lancer la commande :

$ utils/fix_data_dir.sh data/train

Fichiers du dossier 'data/local/lang’
Fichiers de donnés liés au langage. On doit fournir : Lexicon.txt, nonsilence phones.txt, optional silence.txt,
silence phones.txt et extra questions.txt (optionnel).

Fichier 'lexicon.txt'

Le fichier Lexicon.txt contient la liste de chaque mot du corpus (en majuscule), suivi de sa prononciation phonétique.
Exemple:

WORD W ER D
LEXICON L EH K S IH K AH N

The pronunciation alphabet must be based on the same phonemes you wish to use for your acoustic models. You must also
include lexical entries for each “silence” or “out of vocabulary” phone model you wish to train.

https://en.wikipedia.org/wiki/ARPABET
On peut s'aider de cet outil en ligne pour la construction du fichier Lexicon. txt (mais se limite a la prononciation anglaise)

: http://www.speech.cs.cmu.edu/tools/lextool.html

Liens pour la phonétique de la langue bretonne :

e https://en.wikipedia.org/wiki/Help:IPA/Breton

e https://en.m.wikiversity.org/wiki/Breton/Breton_pronunciation

e http://www.kervarker.org/en/courseintro_03_noid.html

e https://en.wikipedia.org/wiki/Breton_language#Geographic_distribution_and_dialects

Fichier 'nonsilence_phones.txt’

Liste de tous les phonemes utilisés dans notre corpus
Une fois les fichiers crées, lancer la commande :

$ utils/prepare_lang.sh data/local/dict '<UNK>' data/local/lang data/lang

A propos des mots inconnus

This is an explanation of how Kaldi deals with unknown words (words not in the vocabulary); we are putting it on the “data
preparation” page for lack of a more obvious location.

In many setups, <unk> or something similar will be present in the LM as long as the data that you used to train the LM had
words that were not in the vocabulary you used to train the LM, because language modeling toolkits tend to map those all to
a single special world, usually called <unk> or <UNK>. You can look at the arpa file to figure out what it's called; it will
usually be one of those two.

During training, if there are words in the text file in your data directory that are not in the words.txt in the lang directory that
you are using, Kaldi will map them to a special word that's specified in the lang directory in the file data/lang/oov.txt; it will

http://www.lesporteslogiques.net/wiki/ 6/7


https://en.wikipedia.org/wiki/ARPABET
http://www.speech.cs.cmu.edu/tools/lextool.html
https://en.wikipedia.org/wiki/Help:IPA/Breton
https://en.m.wikiversity.org/wiki/Breton/Breton_pronunciation
http://www.kervarker.org/en/courseintro_03_noid.html
https://en.wikipedia.org/wiki/Breton_language#Geographic_distribution_and_dialects

usually be either <unk>, <UNK> or maybe <SPOKEN_NOISE>. This word will have been chosen by the user (i.e., you), and
supplied to prepare_lang.sh as a command-line argument. If this word has nonzero probability in the language model (which
you can test by looking at the arpa file), then it will be possible for Kaldi to recognize this word in test time. This will often be
the case if you call this word <unk>, because as we mentioned above, language modeling toolkits will often use this spelling
for unknown word (which is a special word that all out-of-vocabulary words get mapped to). Decoding output will always be
limited to the intersection of the words in the language model with the words in the lexicon.txt (or whatever file format you
supplied the lexicon in, e.g. lexicop.txt); these words will all be present in the words.txt in your lang directory. So if Kaldi's
“unknown word” doesn't match the LM's “unknown word”, you will simply never decode this word. In any case, even when
allowed to be decoded, this word typically won't be output very often and in practice it doesn't tend to have much impact on
WERSs.

Of course a single phone isn't a very good, or accurate, model of OOV words. In some Kaldi setups we have example scripts
with names local/run_unk_model.sh: e.g., see the file tedlium/s5_r2/local/run_unk_model.sh. These scripts replace the unk
phone with a phone-level LM on phones. They make it possible to get access to the sequence of phones in a hypothesized
unknown word. Note: unknown words should be considered an “advanced topic” in speech recognition and we discourage
beginners from looking into this topic too closely.

Modeles basés sur un réseau neuronal profond
e https://kaldi-asr.org/doc/dnn.html

e http://www.cs.cmu.edu/~ymiao/kaldipdnn.html

Utilisation du modele post entrainement

https://medium.com/@nithinraok_/decoding-an-audio-file-using-a-pre-trained-model-with-kaldi-c1d7d2fe3dc5

Entrainement d'un modele compatible VOSK
Un tutorial concis et complet que j'aurais aimé découvrir plus tét : https://github.com/matteo-39/vosk-build-model

L'utilisation de VOSK simplifie énormément le décodage d'un fichier son avec un modele Kaldi. Il faut toutefois noter que
VOSK n'accepte que les modeles d'un format particulier.

D'aprés la page https://alphacephei.com/vosk/models il est recommandé d'utiliser la recette mini-librispeech, présent
sous le dossier “egs” du dossier d'installation de kaldi. Il faudra modifier les scripts cmd. sh et run.sh pour les adapter a
votre configuration et a vos données.

Il faudra également remplacer le dernier script exécuté par run.sh : local/chain2/run_tdnn.sh, par le script fourni sur
la page de VOSK : https://github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/s5/local/chain/tuning/run_tdnn_1j.sh.
Ce script nécessitera également des modification pour I'adapter a votre situation. (réduction de nombre de jobs en parallele
(option $nj) et désactivation de I'utilisation du GPU dans mon cas)

Troubleshooting

o Ne pas laisser de caracteres spéciaux dans le nom des fichiers de données du corpus, ni d'espaces dans le noms des
dossiers (un '&' dans le nom d'une archive sonore peut faire planter la phase d'entrainement du RN)

Article extrait de : http://www.lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1646517341
Article mis a jour: 2022/03/05 22:55

http://www.lesporteslogiques.net/wiki/ 717


https://kaldi-asr.org/doc/dnn.html
http://www.cs.cmu.edu/~ymiao/kaldipdnn.html
https://medium.com/@nithinraok_/decoding-an-audio-file-using-a-pre-trained-model-with-kaldi-c1d7d2fe3dc5
https://github.com/matteo-39/vosk-build-model
https://alphacephei.com/vosk/models
https://github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/s5/local/chain/tuning/run_tdnn_1j.sh
http://www.lesporteslogiques.net/wiki/
http://www.lesporteslogiques.net/wiki/ressource/logiciel/vosk/start?rev=1646517341

	Reconnaissance vocale et transcription (STT) avec Vosk
	Installation
	Utilisation de modèles pré-entraînés
	Transcription d'un fichier audio vers fichier texte
	Utilisation avec le modèle vosk-model-en-us-0.22

	Transcription depuis un microphone
	Entraînement d'un nouveau modèle linguistique et acoustique
	Tutoriaux
	Installation de Kaldi et initialisation du projet
	Traitement des fichiers son
	Création des fichiers du dossier 'data/train'
	Fichier 'text'
	Fichier 'wav.scp'
	Fichier 'segments'
	Fichier 'utt2spk'
	Fichier 'reco2file_and_channel' (optionnel)
	Fichier 'spk2gender' (optionnel)

	Fichiers du dossier 'data/local/lang'
	Fichier 'lexicon.txt'
	Liens pour la phonétique de la langue bretonne :

	Fichier 'nonsilence_phones.txt'

	A propos des mots inconnus
	Modèles basés sur un réseau neuronal profond
	Utilisation du modèle post entraînement
	Entrainement d'un modèle compatible VOSK
	Troubleshooting



